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-. -' This thesis examines a class of systems whose models are described

by linear partial differential equations that depend on a small parameter E.

-. 'First, the spectral decomposition of the so-called "stiff" operators (using

the terminology of [24]) is investigated, including the convergence of

their eigenvalue-eigenvector pairs as E - 0, with the objective of

clarifying their singular behavior. Second, asymptotic approximation of the

solution boundary value problems involving stiff operators are constructed,

using the weak limits of their eigenvectors. This approach leads to a

decomposition into "regular" approximation and "internal layer" approximation,

which are found separately and then combined to provide an approximation to

the original problem. This methodology is not complicated. Moreover, it

A 'alleviates the inherent stiffness when numerical algorithms are employed.

Third, the same approach is applied to some control problems. In this case,

similar results are obtained, provided additional requirements are

satisfied, due to the type of control, which may drastically alter the

! system behavior.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Many physical systems are modeled adequately by a system of

ordinary and/or difference equations. However, the need to consider models

* with partial differential equations arises in many areas of the physical

sciences. Examples include mass or heat transfer [10,14,381, ej cicity

110,33,34,37,38,401, electromagnetic wave propagation [10,37,38' luclear

reactor theory [9,34], fluid flow [19], and stochastic processesr

Due to physical considerations and the desire to obtain simpler

models, the engineer or the applied mathematician often redefines the

Fl variables of the model at hand, so that small parameters appear explicitly.

In systems described by partial differential equations, the small parameter

may represent a small diffusivity or a small convection coefficient in

3 heat transfer, the thinness of a vibrating membrane in elasticity, or

"1cheapness" of control in optimal control problems. However, the introduc-

tion of small parameters may be purely artificial. Such is the case in

regularized and penalized problems [23]. In this situation, the interest

usually lies in the properties of the solution of the limiting problem as

c- 0 and not the problem itself.

The dependence of these models on z is singular, i.e., the formal

limit of these operators as E:-0O, may or may not exist. In the case it

exists, ellipticity of the original operator is often lc, t (order

reduction). Hence the solution of a boundary value problem involving the

.. . ~ perturbed operator converges to the corresponding boundary value problem
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involving the formal operator limit in a larger Hilbert space. Thus, the

need to introduce "correctors" concentrated in the vicinity of the boundary

of the set over which the Hilbert space of functions is defined, is

inevitable [1,5,11-14], [16,24,25,27,29,31,41]. In some instances, the

* formal operator limit may not be well-defined (e.g., not elliptic).

* Depending upon the type of boundary value problems at hand, their solutions

may be expanded in Laurent series expansion of c or may be approximated

by "regular" expansions with the addition of correctors [24,271. In this

class of problems, if ellipticity of the formal operator limit is not

uniformly iost (e.g., in some stiff operators), one would expect some

separation" in the spectrum of the original operator. This last intuitive

observation is the driving force behind the present investigation of the

spectral decomposition of stiff operators.

1.2. Literature Survey

Asymptotic expansions of linear and nonlinear differential operators

depending on a small parameter c have been studied by several scientists

over the past several decades. The underlying theory (such as order and

validity of approximation, asymptotic error estimates, etc.) is discussed

in detail in [11]. Eigenvalue problems of some of these operators are

considered in [5,12,13,15,16,31,32] and the references therein. Most of

* *these references assume that the formal limits as -0 of such operators
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are uniformly elliptic. In this instance, the eigenvalues are uniformly

bounded away from zero as F- 0, or may become dense in a subset of the real

line [13].

U- 9 In stiff operators, there are several conditions that cause

stiffness, some of which are explored in this thesis. In general, the

eigenvalues (and the corresponding eigenvectors) of stiff operators can be

decomposed into groups depending upon their convergence as :- 0.

Boundary value problems for some classes of operators that depend

upon a small parameter c (including several control problems) are studied

in [1,11,14,24,27,29], just to name a few. Formalasymptotic expansions of

the solutions of stiff elliptic boundary value problems are considered in

[24,27,29] without any reference to their spectral decomposition. Parabolic

and hyperbolic problems involving stiff operators seem not to have been

previously investigated.

The main contributions of this thesis are:

1) The spectral analysis of some stiff operators, including the

convergence of their eigenvalue-eigenvector pairs as c -0 0. An appropriate

terminology such as flattening, attenuation and oscillation, is introduced

to describe the deformations of the eigenvectors as E - 0.

2) The approximation of the solutions of boundary value (including

some control) problems involving stiff operators, using the weak limits of

the eigenvectors of the aforementioned operators. The advantage of this

method is its simplicity. Moreover, it alleviates stiffness when numerical

algorithms are employed.

.-.

. ~. . . . . . . .4
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1.3. Thesis Overview

In Chapter 2, the eigenv, -i'e problem of stiff operators that have

coefficients O(1),O(e),...,O(Ep) in the different interfaced subsets

10,l,...,Q (whose union constitutes the open connected set 2 (CRn)),
p

are analyzed. The interfaces are the counterpart of interconnections

between "areas" in large scale lumped systems. One way to understand

the singular behavior of stiff systems is to analyze their spectral

decomposition. Indeed, for small values of c, the eigenvalues of stiff

operators can be separated, depending upon their convergence as E- 0. Their

corresponding eigenvectors are also classified accordingly.

In Chapter 3, using the convergence results of the eigenvalue-

eigenvectors of stiff operators as e- 0, approximations to some classical

boundary value problems (namely elliptic, parabolic, and hyperbolic) are

constructed and asymptotic error estimates are derived. Most of the ideas

are specialized to second order operators for simplicity. However, the

approach is general enough and hence may be applied in many other similar

problems.

In Chapter 4, two control problems are considered using the

approach developed in Chapter 3. For optimization problems (including

control problems), some caution is advised in applying this approach,

because of the inherent dependence of the optimality systems on the type of

observation and control [23,29]. There are several control and observation

mechanisms, i.e., distributed, boundary, pointwise, etc. The control action

transforms the characteristics of the system. Consequently, it may not

9be possible to use the eigenvectors of the uncontrolled system to solve

the controlled one.

|*24

.* .' .

*4* 2~ - ~ ~ ~~ ~.. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. "



Chapter 5 gives the numerical results concerning boundary

value and control problems. The approximations derived using the approach

.. of Chapter 3 are compared with those of the direct approach using a finite

C% element method.

The last chapter contains some concluding remarks and some

" "possible extensions of the results presented in this thesis.

.-

.2'.

,'p

*.. K,

. . .*.. ......
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*i CHAPTER 2

SPECTRAL ANALYSIS OF STIFF OPERATORS

2.1. Introduction

This chapter considers the eigenvalue problem of the following formal

selfadjoint operator, written in matrix form as:

A 0

A

0 EA 1

where Ai, i = 0,1 are unbounded operators.

.Many physical roblems can be described by models containing the

operators A . Examples of such problems in distributed parameter systems

are numerous. WTithout being exhaustive, examples include the following:

1) Nuclear reactor operations [9]

2) Heat or mass transfer in interfaced media having different

diffusivities [10,38]

3) Electromagnetic wave propagation in waveguides made of materials

having different permittivities [10]

4) Small vibrations of elastic interfaced through membranes with different

material densities [40]

5) Continuous stochastic processes when the noise intensity level is

different from one part to another of a medium [4].

There are several motivations for investigating the rresent eigenvalue

problem. First, the operator A may be used in rzany instances in models of

-' interfaced media of mathematical physics, as nreviouslv indicated. Second,

9 the operator A , at first siqht, seems to conceal some "sin-ular" behavior,

using the terminology of singular perturbation of lumped systems [l1.

,.. . . . .. . . . . . . . . . . . . . .*. * * * . * * , * - .
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Third, the introduction of the small Darameter e in models of interfaced

'I media may be purely artificial, in order to obtain an approximation of the

problem at hand. Fourth, a formal Laurent series expansion in powers of e is

derived for some elliptic boundary value problems in [24,29]. It is not

. clear what the relationship is between the terms of this expansion and the

eigenvalue-eigenvector pairs of the operator A In the sequel, these

Ile .observations will be fully investigated.

The eigenvalue problem involving several perturbed operators has

been studied in the literature [12,13,16,17,31], and the references therein.

* . However, the spectral analysis of stiff operators (using the terminology of

[24]) has not been investigated previously. This chapter presents a general

formulation using bilinear forms to avoid possible cumbersome and comnlex

boundary and interface conditions. The chapter is organized as follows.

The eigenvalue problem formulation of a class of stiff operators involving

. , two bilinear forms is presented in Section 2.2. In Section 2.3, the con-

vergence of the eigenvalues and the corresponding eigenvectors as E - 0

is investigated. Several examples are given to illustrate the results obtained

in this section. In Section 2.4, a generalization of the analysis of Section

2.3 to p + 1 (p > 1) bilinear forms, is undertaken. In Section 2.5, it is

shown, with the aid of three examples, that some of the results derived in

Section 2.3 are applicable to a larger class of eigenvalue problems. This

is accomplished by relaxing some of the assumptions made in Section 2.2.

In Section 2.6, formal asymptotic expansion in powers of e of the eigen-

values and eigenvectors is discussed. In Section 2.7, two numerical examples

@2.:: ,
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are solved. The first example illustrates the properties of stiff operators

of Section 2.3. However, the second example elucidates the properties of

stiff operators of Section 2.5.3. Finally, in the last section, some

concluding remarks as well as some extensions of the forthcoming analysis

are given.

2.2. Eigenvalue Problem Formulation

In this section, the eigenvalue problems of a class of stiff operators

is formulated. Let V, H be two given real Hilbert spaces such that V is

dense in H and

Al) the injection of V into H is compact.

Let V* denote the dual space of V. After identifying H with H*, one has

A2) V C C V.

Let a.(',i), i = 0,1 be two forms on V such that the following assumptions

hold:

A3) ai( ,i) is bilinear, symmetric on V

A4) ai(P,) is continuous on V, i.e., there exists . such that

a OP,4 < 8. DW ~T EV, V$EV

A i)1a ) > ii( ), where ai > 0 and p is continuous semi-norm on V

A6) !) + Pl(p) is a norm equivalent to IHLVi0- 1

A7) a( ,) = 0 on V. C V, where V. is an infinite-dimensional
1 1

subspace of V, i=0,1.

A8) If , .-- L0(') is a continuous linear form on V, null on Vol there

exists pEV (modulo V0 ) such that

a0(;,:) = L(,), ;V -.,

0 0.

%i

e1
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Let a~ pt) a( p,i) be defined as

a( P,P) = a ( P,Op + Ea1 NMip (2.1)

a =P a 0(OP,O + a 1('PMi . (2.2)

Now some important remarks clarifying the above assumptions and

definitions are in order:

Remark 2.1:

It can be easily seen from (A3) that a (',Pa6P,!p) are bilinear,

symmetric forms on V.

Remark 2.2:

*.

From (A -A), one concludes that a (pp), a(pp) are coercive and
E

-. ... ebounded on V. In particular, for sufficiently small c, they satisfy

v-) and thae sem < ai(- m ) +0 i) < 0

Remark 2.3:

2<a (PW O (A < )p 112 WE V

where'ii' It ca be easily see a (A3 ) tha a, (een , aolyo aep biiear,

whr an the dete rs da i t Oiin ewenV n tsda

4.

Remark 2.23:

FrmThe reina frmas, one concludes that thfine sea ctr ofper are [2

. ' (2 3E

" ' where enote) s indedt paiin bew and itsnd duey nal I (ep

..... ro - the preceing frmarsa(), a(ne cnldefin e snedit ofper a re 2

41 ~e
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subsets of MR , consisting only of the point spectrum [2,15,42].

kk +
The eigenvalue problem for A is, then, to seek {Er , 1 } e J+ V such that

k kk
AX =y X (2.4)

The equivalent variational formulation is

k kka E (X (x , ) , V ' e V (2.5)

Now, some well-known facts are summarized in:

Proposition 2.1:

If (Al-A6) hold, then there exist unique sequences {yk +

{)kl E V such that (2.4)(or, equivalently, (2.5)) is satisfied. Furthermore,

E k=l

1 2 k
1) 0 < < Y < ... lim =+

2) {x } is a complete orthonormal set in H, i.e., in particular,

(xk ,x = 5kX (Kronecker delta)

3) The multiplicity of each eigenvalue is finite

4) The eigenvalues satisfy the following minimax formula:

k .y = min max a (X,X) (2.6)

W C V, dim W=k X E V,1 X 11=

Proof: See (2,15,42]

Remark 2.4:

It is noteworthy to mention that Prop. 2.1 is valid for any positive

value of e, e.g., e 1. In this case, the eigenvalue-eigenvector -air

of A is obtained.

.' .' .% . *.." ,", '". " * ';. , .... ,'. -,•. . . , ... ..-. ... .. , .- . -. " .:'. , ,.;" .- -. • . .". •
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2.3. Analysis of the Spectrum of A

This section starts with a series of lemmas which characterize the

various properties of the spectrum of A . Then the convergence of the

eigenvalues and their corresponding eigenvectors as e - 0 is stated and

-. proved in Theorem 2.1. Some typical examples are given at the end of this

* section, to illustrate the ideas advanced in the course of the present

analysis.

, One way to gather information about the behavior of a single eigenvalue

as E - 0, is to bound it from below and from above by known functions of E.

SThis task is accomplished in:

Lemma 2.1:

For sufficiently small positive e, the following estimate holds:

Ey < Y < Y (2.7)

' k 00
for k =1,2,..., where {y are the eigenvalues of the ooerator A, i.e.,k=l

they satisfy

k k k ka0 (ok , ) + a l(P k) Y (P Ok ),V

Proof: For sufficiently small c, one has

'a(p,p) < a (pp) < a(p,p) , V (2.8)

9" '.u Using the minimax characterization of eigenvalues (2.6), one readily deduces

(2.7) from (2.8).

.Now an upper bound for the eigenvector norm in V is derived:

, .Lemma 2.2:
" ., k . k ie

If E is any normalized eigenvector of A , corresponding toy C, i.

1I the

... = , the

"' " %; " ' , " "" ; o -; ; ; i ; . ; " ., _ . ; , ; - 2 -;I- - . . . . . . . . ..H. . ' - . . .
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k2 k (2.9)
0C X E:V YE

for k 1,2,....

Proof: For each k, the sequence yk is bounded by Lemma 2.1. Let = k

in (2.5) to get

kk k k k
a (×k,xk) = YE (x ,x

k

k< y

ioy.w7 one easily sets (2.9) by using (2.3). At this point, the tools necessary

for finding the limits of the eigenvalues are available.
;.% , ...

Lemma 2.3:
"- k oo L' 0 k 00"

The sequence {( k=1 is decomposable into to subsequences IX I k=, {e k=1

such that, for each k,

lim = 0 (2.10)

%" k k
lim kP 0 > 0 (2.11)

. 0

k = 1,2,....

Proof: The following three-step contradiction argument is used to ascertain

the above lemma.
k

1) Suppose lim y = 0, k = 1,2,.... Let V = V VI where the
log 4-0 0 0'

orthogonality is that of V. Take v E V and write it as
0

Sk kv= (vy)x E (2.12)
K'.-["k=l

-ith this choice of v, the following inequality holds:

:-..
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a (v,v) - ao(v,v) + ca (vv) > c (2.13)

for some strictly positive constant C, which is independent of s.

Usi g ( .12 , E~ v v)  Z k k 2 ,Using (2.12), a (v'v) = C (vx ) which converges to zero as c 0,
E k=1

contradicting (2.13).
k- k

2) Suppose lim YC Y > 0, k 1,2.... Select v e V and write
.0 0 0

it as in (2.12). It is clear that the following inequality holds:

a (vv) = Z y (v, (2.14)

k=1 E) >

for some strictly positive constant C, which is independent of E. However

aE (v,v) = ca1 (v,v), which converges to zero as e - 0, contradicting (2.14).

k
3) Suppose lim y E 0, for k = 1,2,...,., without loss of generality.

Let
1 2. V2 = span{X 2 ' x

Select v E V1 r Vi and go to step 2, to conclude that V is infinite0 Z.I.: dimensional, unless V0 is degenerate (i.e., finite-dimensional). An

identical argument can be advanced to contradict the possibility that (2.11)

is true for k=l,2,...,Z (Z finite).
Nowdeops {ykk k kw k

7 l into { , } if lim y 0 and into
E' E k=l e k=l

:-"1 -';k k 00.=
., •t,4 }kl otherwise.

E: E k=l'

Some attention must be focused on how x converges to zero, k 1,2

Lemma 2.4:

k kThe sequence Xk converges to zero with a constant rate X i.e.,

,k -= + ,(E) , k 1, 2

£ I":

.4 " " , , € , , ,. , , , .. ,._...,v'..,.. ... ,..... '.: ~ - " ''"., ,
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Proof: By Lemma 2.1, one may assume, without loss of generality, that

E \k + o(C) (2.15)
E 1

with v E (0,1]. In order to complete the proof, it suffices to show that

k. k k
If pis a normalized eigenvector, i.e., (p ' , ) 1, corresponding

to X , then

k k k k k(A a p ~+ Ea (P ' ) (2.16)
E 0 1 E'

from which one observes that

a k (P.P < ( (2.17)

Therefore, a0 ('Pkk --) 0 as c -~0, which implies

k
.0( ) 0, as e - 0

by (5. Using (A6), one has

ki( > C (2.18)

for some strictly positive constant C, which is independent of E.

- . Suppose that v < 1. Then,from (2.15-2.18) one concludes that

* .k kv
X 1 C~ + o(C)

k k

(ka +o(E). (2.19)

k
-k

From this, there exists an element of V, 1P s-- such that
C ')12

--k-k1-

% 1 EE

I 

-
.

* 
. .

. . . . r
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However, such a claim is false because

P ) -- -- __ 1 - +- as E 0

(e'E)H V

Since the injection of V into H is continuous, IIP E 11 as c -0 0. In

conclusion, there is no element of V such Lhat (2.19) is satisfied.

Remark 2.5:

kFor v < 1, the major contribution to X is supplied from V1 (Cf. (2.19)),
E; 0- but the norm of the contributor is concentrated on V0 (Cf. (2.18)), which is

S "the paradox.

SiHereafter, the focus will be on the asymptotic behavior of the eigen-

vectors. The following lemma summarizes the norm bounds of the eigenvectors:

Lemma 2.5:

k k k k,0
Let {A ,Oc k= , 1J, k=l be as in the proof of Lemma 2.3, with the

eigenvectors normalized in H. Then,for sufficiently small c, the following

x. "estimates hold:

i) k V < C (2.20)

2) v- IIk I < c2  (2.21)

k 1,2...

where Cl, C2 denote constants independent of E.

Proof: Use Lemmas 2.2-2.4.

The forthcoming theorem is the main result of this section. it statesrJ. the convergence of the eigenvalues and their corresponding eigenvectors

..-, ,-. as E 0.

k I
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Theorem 2.1
k 00 k 00Let {yk be the eigenvalues of A and the corresponding

'{k=l Ek=l

normalized system of eigenvectors. Then, given a sequence of c converging

k k k k co
to zero, {y, k can be decomposed into two subsequences {X , 1 i and

E E: k=l cc k=k k
k ,k C which have the following asymptotic properties, for each k,Sk=l

1) x 0 linearly in , k k strongly in V

2) k k > 0 k k weakly in H
E: 0 k, k

where {'PI and {p } satisfy
k=" k=l

k kk k

a0.'. -x) = u0Q4 ,x), 'k E H1 C H, V7 X E V . (2.23)

C'"'?)Proof: Using the fact that jj --k~ 1, the estimates (2.17), (2.20), one

k kk k
;'-K. concludes that, given a sequence of s converging to zero, p weakly

in V (hence strongly in H by compactness). From (2.17), it results that

-..- ~ O By Lemma 2.4 Xk is asymptotically equal to ,1k. Hence (2.5)

k k
degenerates into (2.22) in the limit. "'"

k k k

Now let w = - p which satisfies

k  k

1 k k k k k k k k k
E. a (w ,w ) + a( ((w 0 w) + (w w
e0 1 C E 1 E C

k 2

The right-hand s'ide of the above equation converges to zero as s 0.

Hence k  - 0, indicating that - strongly in V. It is clear that
E"V

-.* * .,. . . . . ..
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k kk kk
=- a (f ,) + a ( al ,q) (2.24)

0 C' 1 E

-. "-" k k
for 4 normalized to 1 in H. Since i is 0(1), using (2.24) and the

C

minimax characterization of eigenvalues, i.e., (2.6), it results that

k k k k 1
ai0 ,'p is 0(l) and al(PtP) is OC-) or equivalently

0k = 0(1) (2.25)

Pl k)  1 (2.26)

S-i "Hence,the estimate (2.21) is tight. Therefore

IV Iv kll- 4- as E- 0 (2.27)

Note that k also satisfies

.' a ) + Ea= ( ,x), 1 I< ) V . (2.28)

From (2.25-2.26), one deduces that a (X) is bounded as E - 0 and
a is 1(" S i i taking formally the limit as E 0

in (2.28) yields:

Nk k k*O a0( 
k ,x) = u0(P ,x<), Y x EV(.9

we x k 0 H1 ( (2.29)

. : -"where k HI (a subspace of H) .

jb.-
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Now consider the following boundary value problen

k k k k
a0(Vx) + ca 1(v x) = ,x), V x E V

kwhich admits a unique solution V EE V for positive values of c. As E - 0,
k k

v k k strongly in H.

k k vk

Let w k which satisfies
C E C

k k k k k
a0 (wE ,x) + ca l(w ,X) =IJ( - ,k,x)

k k k X

The left-hand side of this equation goes to zero as E 0, implying

( -Ik _ k,x) 0 as E 0.

Therefore
k k .

1P - k weakly in H.

Remark 2. 6:

The weak convergence in Theorem 2.1 cannot be improved in general.

This will be illustrated by Example 2.4.

Remark 2.7:

A careful examination of the steps of the analysis undertaken in the ._

present section yields the following observation: the weak limits
kk.

k-l' t'k-i form an orthonormal system in H. This remark is of paramount

importance in approximating the solution of boundary value problems involving

the operator AS

Remark 2.8:

In the sequel, the fact that k -
" +o ass -E 0 is referred to as the

k

resonant behavior of ,.

,'-



Now some examDles are given as concrete illustrations of the above

abst:act results. Only operators of order less than or equal to four are

r- considered, due to their frequent usage in modeling of physical processes.

Let Q = u u U S be a bounded set in IRn with boundarv r = T U r
O 1 0 f*

The manifold S denotes the interface between 0 and i. as indicated in
0

Figure 2.1:

q-.o

-1(a) (b)

Figure 2.1 a-b. Examples of interfaced sets.

Example 2.1: A second order operator

2 1
Let H = L (Q), V = H (Q)

- n
ai(pp) = E f dx i 0,1','/'[ ji a x. Dx. d ,

j=l Q, 3

then (2.4) becomes:

0;2:
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k k k
-A O Y x on Q2

EQ E EQ 0

k k k
EA X Y X onlEl C E 1 1

k =0xklI

-0 *r 0 (2.30)

k k
XCO =X El

on Sk k
ax k axk

EQ El

4..

where A stands for the Laplacian in IRn

v is the unit normal on r or S, outward relative to 0'

In this example, (2.22) becomes

k
p0 =0 on Q0 0

k k k
Ap= A i on Q (2.31)

kI lI  0, iS = 0

which is a Dirichlet eigenvalue problem for the Laplacian operator in QI"
M1*

The subspace V of V is:
* 0

V0  X C V :X 0  0, XI  H I
V _{0 H0 (1 )}

The conclusions of Prop. 2.1 are applicable in this case. Hence k}= 1

is a complete orthonormal system in L
2 ( I).
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Equation (2.23) becomes

k k k
Ij 0 Pon Q• -'" - A 1 * 10 0 o 0

k 0 on S1 (2.32)

aq k

klir ~ i 0

which is an eigenvalue problem with mixed boundary conditions for the

Laplacian operator in S1 Again, the conclusions of Prop. 2.1 are applicable

in this instance, provided the interface S is sufficiently smooth. Therefore,

.for an orthonomal system in (Q0). It is noteworthy to observe

k k 2
that = 0 because ik must be orthogonal (in L (Q)) to 9,-=,2

The subspace I-I of H is then

1 :Xo

H= {X E H-: -X-H(;r) -- 0 on S, X 0}

0 
00

Remark 2.9:

In Example 2.1, one can consider

n n

a p" Z E~ ak dx i dx,,1
"" 1 j=l k=l Sli -T

' i ak0. x  x ,

where a satisfies

.*.' '.*l~ak 1

a-k a.

S4n n n 2
3) Z Z ak k E

j=l kl a  - k=

'.4 The discussion therein remains unchanged.

.-..-.. t...,-. -..- ,., '.'..'. ..- - ., "' ., ".".'.. . . . . .. . . . . . . . . . . . . . ..... ......... ., ... . . .. . . . .. . ..". . . . . . . . . ..W • , -: " ] "
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Example 2.2: A fourth order operator

Let H L 2(Q), V H 2(PI)

a i'4 ) f2 A PAi dx , i = 0,1
i

then (2.4) becomes:

2k kkA Y on 0l
E XO C~~~ EOf 0

2k kk
E A X El = y x E on Si I

k cO
. -- =0 on r0

-Xk (2.33)
k E 1
XI - = 0 on r

k k
k k lXo DX

x =x ,
Eo cl' V av

a k ak on S

AX 0  =EAX , k v 3A-E c9A(E

Equation (2.22) becomes

a. k
P = 0 on Q
0

2 k k k
A X on Q

3,k k¢ (2.34)
k 1~..1 = -=Oon 1

1 a\)
•.5.. k

This is a Dirichlet eigenvalue problem for the biharmonic operator in 2 "

.

."?.5



' '.'- --

23

Equation (2.23) becomes

2k kk12 L *0 = W 0 0 on 0

k
1 . 0 on 1

(2.35)
k 0
0 _;V_ 0or 0

k
k = o

m v =0 onS

S-=0

Identical comments to those of Example 2.1 can be made here, provided some of

the function spaces are changed, to reflect the increase in the operator order

from two to four, as seen in (2.33).

For simplicity considerations, a one-dimensional version of Example 2.1

'. is studied in the sequel. This example will be useful for illustrating later

developments. It will clarify many aspects of the eigenvalue problem at hand,

such as nonanalyticity and oscillatory behavior of {k1}k , "flattening"
e kl

(and sometimes "attenuation") of {p}kl

Example 2.3: (Cf. Example 2.1)

Let 0= (a,b) U (c,d), Qi = (b,c)

... ." r0  = {a d}, 1 = {d}, S = {b,c}

with a < b < c < d as in Figure 2.2.

0 42 0. ..
,,... 00 F

'a b c d

F , c o t
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In this instance, (2.31) can be readily solved, to get

k k r.
I1%-b)

k = 0 (2.36)
0

k = 2 x-b J
-p sinkr-1 c-b c-b

The solution to (2.32) is
2

k '(2k-1)
ab b-a

-a

sin(2k-l) on (a,b) '

k = f b-aok

ab
0 on (c,d)

k

ab
(2.37)

= ((2k-l) ~N~d d-c -:-

(0 on (a,b)

k =

cd I rX-C
sin(2k-1) - on (c,d)

k .. 0 on (b,c)

cd

. . - . - .-
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Remark 2.10:

Note that in the case when 2 is not a connected set, each subset of itU '0

is associated with a subgroup of eigenvalue-eigenvector pairs as indicated

in (2.37).

* HUsing Example 2.3, some exact eigenvalue-eigenvector pairs are constructed

for some specific values of E to shed more light on the asymptotic behavior

of the spectrum of the operator A . For simplicity, consider the following

example:

Example 2.4: (Cf. Example 2.3)

Let a - -1, b = 0, c = d = I so that (2.36-2.37) become:

k 2
X - (kir)

k = 2

-r 2k = ((2k-l) 2)

= cos(2k-l) 1- x
0 2}

- k
=0

• Direct computation of the eigenvalues yields that y must satisfy:

kI z

S cos sinji +" Jsin cosV = 0 • (2.38)

E.. F
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Despite the transcendental nature of (2.38), it is possible to solve for yk

for some sequence of E. For example, for E = 2

1 gv beoianxc(4 Vo+i)
{i E I given below is an exact eigenvalue-eigenvector pair

Oil

2

0 cos T x (2.39)

2T.
"'" £i = Cos x

Remark 2.11:

It is instructional to observe the oscillatory behavior of as

Z +- . This is consequential to the weak convergence of , I inL2%"2 zero i e. 1.22

L2(4 I ) to zero, i.e., ( )2 -0 as Z - + , V X E L2 ( 2), which
Z. L (

can be easily verified. Furthermore, it can be easily seen from (2.39)

that {j) k 00 are not analytic functions of E, in the vicinity of c = 0.
E k=l

Therefore, the task of finding these eigenvectors (in order to solve boundary

value problems involving the operator A ) is nearly impossible. The
"":k co k1OkI
alternative is to use the weak limits of !X i.e., {and t;k I

El ik=l a 1 k.'

since they possess some desirable properties (Cf. Remark 2.7).

Remark 2.12:
1 i 1

The computation of _ ,using the Rayleigh quotient of _ , yields
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ira ( Pp
e E E

2. (°p ,p )
E E

" r o 2 sin - X) dx"-  sin -x) dx f l X-7
J1 2 2 Z. fz

1 +
2 2

1 22 1 E r 2

iT 2

which shows clearly that the oscillatory behavior effect is to cancel the

effect of e£ in the bilinear form in order to contribute an amount of 0(1)

to the value of i (Cf. Theorem 2.1).

1 k kSimilarly, for k - , k = 1,2,..., {X ,k } given below is an exact
k k 2 ' Ek Ek

eigenvalue-eigenvector pair

k 2

X =(kr)

k
k" k k v' (2.40)

k si0 k k

k
-l 1 sin kx

k

Remark 2.13:

Note that in (2.40), ek depends on the index of the eigenvalue. Hence,

one cannot let Ek go to zero and observe what happens to this eigenvalue-

eigenvector pair.

. . . . . . . .
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Remark 2.14:
k -

The results of Theorem 2.1 show that, k0 0 in the present example.
E:O

This is certainly reflected in (2.40) by the presence of the factor v :

multiplying k This behavior of k is referred to as the "attenuation"

kkk
of . It depends generally upon the choice of the space V. See

Example 2.5.

Remark 2.15:

The computation of X k using the Rayleigh quotient of k yields

k l(k) 2 5k + Ek(k )

2 k 2€k  k

Observe that the relative contribution of a0 (k ,O i.e.,
k k

a0(pk k "

k k
k kL 2  , is O(sk). This property seems to be of a general nature.k k k

See Example 2.5.

Remark 2.16:

k k
In the proof of Lemma 2.4, it is mentioned that a 0(ikk) < O(E), which

is certainly illustrated by the present example. -

Remark 2.17

The presence of Ve. in the argument of the sine function in (2.40)
k

k k
indicates that "flattening" occurs in P as c - 0 which is predicted by the

E
k k ,

fact that a k0  < 0(E).

The next example shows the presence of flattening without attenuation.

6J
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Example 2.5:

Let H = L (2), V = H (2;I) with 20 (-1,0), 2i (0,1), F = 1-I1

F '1i, S (0) and identical bilinear forms to those of Example 2.1." °. 1

From (2.22), the limit of c k}= as c 0 satisfies• £ k=1

k k
" 0 Ok(0) on P 00 1

d2  k k k
d 2 i = ' 4 on 1 (2.41)

dx

k

1  k
-(0) 0, P (1) =0

dx I

whose solution is

X k ((2k-1))2

1 2

1.

.' k 'I
"_," =cos(2k-1)- x

For"= 2 ' k = 1,2 .... is an eigenvalue-eigenvector pair is

( k-2kL.~~ 2 %I(.2

k(2k-l) 1  -k

e 2~
k

Jk
-. CS- ((2k ./ - .2.2(2

E'' k k 2v

I.' .° =cos / (2k-1)

i .. k
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kk
It is noteworthy to observe that k k 0 in (2.42) is not multiplied by V7

which indicates no attenuation. However, the argument of the cosine function

does contain V signaling flattening.

Remark 2.18

The computation of Xk  using the Rayleigh quotient of Pk shows that"""" k k

1 2 1 2
-"'.!k=i((2k-1) F) + -((2k-1) -) k

k 22'k 2 9k
X Ek -- + --

2 2

' vk k k k 1
N 0ote that a0(1P = 0( k) and (02( --2 in contrast to that

k Ek k k L(Q)

of Example 2.4. However, the relative contribution to the value of the

eigenvalue is of the same order of magnitude.

k
In summary, flattening of ; is inherent to the problem, but attenuation

depends upon the order of magnitude of a ( k , k ) which, in turn, depends upon
0 £

k k
the choice of the soace V. If a0(P ,P < O(E),then attenuation is present.

2.4. General Results -

In this section, the results of Section 2.3 are generalized to o+1

(p > 1) bilinear forms. The generalization of Theorem 2.1 is stated, bi.t

its oroof is omitted, because it follows similar steps to that of Theorem 2.1.

A corollary is then presented, which considers positive as well as negative

powers of E

Suppose one is given two Hilbert spaces V, H as in Section 2.2. Let

a.(P, ), i 0,l,2,...,p, be p+1 (p > 1) forms on V, with each of them

" -satisfying (A3-A5).

hi'.

0= °
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It is assumed that:
P

. (A6') Z pi(o) is a norm equivalent to 1I11v

i=0'
-ao( , ) is null on V C V, V $ I0}If0' 0 0

(A7') al(0,p) restricted to V0 , is null on V1

a p(p, p) restricted to Vp_1, is null on VP $ {0}

(A8') If i'-'- L.(4) is a continuous linear form on V, null on V.,j there

existsp G Vj 1 (modulo V.) such that

a.(,P,) = L.(W), VVj 1 , j=0,1,2,. .. ,p , with V_ = V.

Let a , be defined as

p
a ')= ! e .

1=0

Remark 2.19:

Remarks 2.1-2.3 are applicable in this case.

The variational formulation of the eigenvalue problem is to seek

{y x } e X V such that

k k k V
a (XE,) = y(x ) C (2.43)

" In this case, the conclusions of Proposition 2.1 are valid. Moreover, sore

additional properties are summarized in the following theorem, which is the

counterpart of Theorem 2.1:

i . Theorem 2.2:

k co k co
Let {y be the eigenvalues and {X } normalized

E k=1 r k=l thendin nor a ize

S"eigenvectors,as derived from (2.43). Then given a sequence of c converging

k k.'
to zero, {y .Xk can be decomposed into p+l groups

-' - '.
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k k ook k
E=Ol, , Zp-ll and { P , k }, with the following asymptotic

properties:

k 1'p P) k k
1) ? C + o(J) P P strongly in V

£ p

2)k k Er +O r k k wal nH
E r r E r r

whre k=1 ad r k=l' r=O,l,.. ,p-l satisfy:

k k k k
a p(p ,X) X p ( p ,X)9 Vp Vx E V P(2.44)

ar( p kX) =P k~(tr x), k e H C H9 V X V 1

r=O,l, ... qp-l. D (2.45)

Let
n

b E~)=Z ~nm (m-n > 1) where b .Gp'i),

i =-mm~l...,nare m~n+l forms on V, satisfying (A3-A5), (A6'-A7') then

one has:

Corollary 2.1

Let c
Lt{v I be the eigenvalues and {x I the corresponding normalized

ck=l F- k=l

eigenvectors, derived from

b (x~ ,'~) = k (x~ k'P) ,V 'P (2.46)

k k~
*Then, given a sequence of E converging to zero, {,P( I~ can be decomposed.

k k 0 k k
into {X ,PI and { ± k . -m,-n$-l,. .. ,n-l, with the following

c £ kl 1,Z E C Z k=l'

properties:

,7I
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1) k k+n + o(n), k E strongly in V

-"k k r (r) kr k
2) 11 = r + o (E), k P weakly in H,.,r r C r r

r =-m,-m+l,...,n-

where { I and k r = -m,-+l,...,n-i satisfy:
k=l rkl

k kk k
b n ,x) X (nk,x), E Vm+n, Vm+n  (2.47)

k k k kr rr r
b( P~X)=X) Wrr r rEHm+n-r C ,V r-l

C r =-m,-M+l,...,n-l. (2.48)

' "Proof:
" "Jk m k

Let m+n = p, a. (p,) = m ( ,i) , i 0,1,...,p and y, = E in

Theorem 2.2, to get the desired results.

9'.

2.5. Additional Examples of Stiff Operators

C Several operators depending upon one or more small parameters, possess

some of the properties discussed in the previous sections, although they do

not fit in the axiomatization of Section 2.2.

In this section, three such examples are investigated. The differences

-. ""and similarities with the operators of the preceding section are highlighted.

41

In Section 2.3, the bilinear form of (ip,') is assumed to be coercive on V,
2 " V. hi eci n

i.e., a (iPP) > CLE lip i, V V 'P V. In the first example of this section,

the bilinear form a (Sp ) satisfies
X P > E

*' % a (,PP) + H iVl > V2 2 (2.49)

*, . * i'for some positive constant

" 9 
' ' , ' "

' ' ' " ] i " ' '• 
" ;

' i ' - - : "-r 
"

" < . . - l " " : " ' " .
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2.5.1. Neumann eigenvalue problems

2 1 n
Let H L ( 2), V = H (0) where 2 = 0 U 2i USCIR with sufficientlv

regular boundary r = U and interface S. Let a.(P,k) = ! . -dx,

j=l J j

i = 0,1. Then the eigenvalue problem is expressed as

*k k k
AX =Y X :0  on S1

k kk- AXX Y yXl on

.Xo =k0, 0 (2.50)v F0
= 0,1FI.

k k
x =xcO = 1i

}on S

k- k
ax ax

00 El

It can readily be verified that this problem admits X= 0, 'P = constant

as an eigenvalue-eigenvector pair, i.e., 7?(A) # ¢ (null space of A ). IfE

the operator A is restricted to H (Q) M(A ), then its spectrum can be

decomposed as in Section 2.3, i.e., there are two groups of eigenvalue-

eigenvectors {Xkkk=l , {k "k=l having the properties of Theorem 2.1.
-t ki= Cn

The limits of the eigenvectors as t:- 0 satisfy, respectively,

k
? O 0 constant on 0

O -l I A1;1  on 2 (2.51)

k k

,';'-,"X''V). ''.- :, v ' ' ', : .- ::i"v'v , ' v-.---..;.: ,-.,',,_.. -' . --- , -; . " •.
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- Aon 20

'- " i = 0 on 2 1 (2.52)

k k
00

where the constant in (2.51) is chosen so that k E H1 (S).

* i Remark 2.20:

1 1
Note that C"(2) is not dense in H (Q). Therefore,the dual of H (P)

is not a space of distributions. Hence (A2) is satisfied in a specific

sense [30]. The same interpretation applies to Example 2.5.

The next example is quite different from the preceding examples.

* - Mathematically, it does not satisfy (A5)-(A6). Physically, it arises in

* -the field of heat conduction when boundary convection is present.

2.5.2. Robin eigenvalue problems
2 12

Let H = ( .), V = H (2) where Q is a bounded set in IRn with sufficiently

.. regular boundary r. Consider the following eigenvalue problem

k kk
,-AX Y X on 2

(2.53)
k:-. k

+ ex on

which can be also expressed as

I " k k kk H(2.54
aO(X ,) + eal(X ,() = (X H C6 (2.54)

!-
-0 e E
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where

a0(Op,iP 0 E dx
0 ~ 12 3. ax.

a 1 ( p) = r tp i

Problem 2.53 has no zero eigenvalue. The limiting eigenvalue problem is

k0 (2.55)

which has a single zero eigenvalue y 0 0 with corresponding eigenvector

0 0
'P=constant. Therefore,there is only one eigenvalue y.- of (2.53) which

0
converges to y

Now the above discussion and the convergence of the eigenvectors are

formalized in: -

Theorem 2.3:

Let {y be the eigenvalues of (2.53) and {Xk the corresponding
E k-l 1 :k=l

normalized eigenvectors. Then, given a sequence of e converging to zero,FI

k k 0 0 k k00
LYE, xe}~ can be deopsdinto {YE and lyeX ~ such that

0 0 0
1) Y E 0 C x strongly inV

2) y k~ yk > 0, x k~ x kstrongly in V, k 1,2,....

kkwhere {yE,<,k=l satisfy

k k kV EVa 0(X ,')=Y (x ,) VpEV(2.56)U k=0,1,2,...
7.
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Proof:

First observe that

+ -- + > a 11 pl ca > 0, V p E v (2.57)

for some constant X > 0. For e << 1, the following inequality holds

a- a(, O) + al(v') + X I1 > ao('P, ) + Ea (ipP) + ,\ HI2 H' E V

(2.58)

k k
Let {v ,p } satisfy

k= 0
ao(pk ,p) + al(pk,p) k V E V

with {p k lkI normalized in H. Then using the minimax characterization of
*k=

eigenvalues, one concludes

k + ~ k k ka 0 (x ,x) + a1 (x xk +

S
,> I a by (2.57) (2.59)

Consequently, given a sequence of c converging to zero, X k X weakly in V

(hence strongly in H), where X satisfies (2.56).

k k k
Now let w = X-S

k k k k k k k ka (w ,P) + ea kw ,) = y ,) + (Y _ y )(xkp) + sa (x k ) V E V.

(2.60)

k

Let = w in (2.60) and use (2.57) to get

k'w~ k k+ k + w j w'<j 2
a k(w k ) + EaI  ww > a0 H -0 c V

from which it results, using (2.60), that

e,, - 0 as c *. 0.

°.
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Therefore,

k k
X - X strongly in V.

Now, a simpler version of this example is considered to illustrate -1

0 " .
the flattening of X as e - 0.

Let Q - (-1,1), r = {-1,1}.

k k 00
In this instance, direct computation of {yk,x } yields

2z 2y = (Z )

2Z.
X = cos _x + c,, sin Z x

Z..°

Xc (2 . Tl) 2 2
2

Computation of the pair y X is not trivial. However, the following

6? E

approximation can readily be found:

0 2 o2)

2+~)(2.61)-.

X cos Ex + sin ex + 0(c) .i

0 0
It is worthy of observation that X flattens as E 0, to become x =1

on Q in the limit.

Remark 2.21:

The above analysis is unchanged if

4N

4 4'
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p n n

- ; a. (x) x -- .dx

11

where

a a

v = unit normal, outward relative to Q

a (x) E C (Q)
ij

a (x)a (x)

i,j= 1,2,....,n

2.5.3. Other examples of stiff operators

The third class of eigenvalue problems to be considered arises in heat

transfer, when internal heat exchange with the surrounding by free convection

* is taken into account. It will be discovered that a different order of

magnitude of the convection in interfaced media also produces stiffness.

First, a general formulation of these problems is presented. Then the

* convergence of the eigenvalue-eigenvector pairs as c - 0 is derived. The

--. results are then specialized to a second order operator. A detailed presenta-

tion is not pursued because most of the ideas are adapted from Sections 2.2-

* . 2.3.

Suppose two Hilbert spaces are given as in Section 2.2 and four forms

a (o, p) on V, bi( ,W) on H, i = 0,1. The forms ai(p,¢), i = 0,1 satisfy
i11

(A3-A7). The forms b.(pp), i = 0,1 satisfy

o'1
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(B3) bi( ,p) bilinear, symmetric on H

(B4) bi , is continuous on H

(B5) b.i(i,#) > q. .( ) where . > 0 and qi ( ) is continuous

semi-norm on H

(B6) q(i) < [iPi(h), V E V, > 0

(B7) q0 (P) + ql(P) is a norm equivalent to fj 11H '

In the sequel, the behavior as e - 0 of the eigenvalue-eigenvector pairs

of the following eigenvalue problem is investigated:

(K' + :al(vk + b + b= (

k 1,2,..., E V (2.62)

Theorem 2.4:
%-' fk CO k .Let {y c}k-- be the eigenvalues of (2.62) and {X k= 1 the corresponding

normalized eigenvectors. Then,given a sequence of c converging to zero,

kyx is k k= k k 0tycoE is decomposed into {X 'P I and {i ,E } having the following
E'kk - l'k-

properties, for each k:
,, i k  k k

1)"-- 0 linearly in C. O P strongly in V (2.63)

k k k k
2) u 0 > 0 affinely in *, " weakly in V (2.64)

where {.kkI and satisfy
k=l k=l

k k kkk kal( k x) + bl( k,x) = Ek( kx) , V V V (2.65)

(k k( k.X k-'-'" ao(kx G X l) X) E V1 , V C VI

"k,. 1 (2.66)'Q: k k k)
k'i 'U =  .k) ._.,

b~ 0
k = 1,2,...

m,,1
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Proof:

Let

(xk *xk) l (2.67)

Using the simple arguments of Lemma 2.1 and Lemma 2.3 adapted to the present

eigenvalue, one concludes that there are two groups of eigenvalue-eigenvector

k k ~ k k o k
pairs Ix P 10 and {11,~ such that X~ -~ 0 linearly in e and

U'e *- k e'c e sk=l E

0~ i> 0. Adapt Lemma 2.2 to the problem at hand to get

+ : (2.68)

its sice X kconverges to zero linearly, it results thatM

<hkI _ C (2.69)

for some strictly positive constant C, which is independent of c, and, hence

given a sequence of e converging to zero

k k
P - O weakly in V.

From (2.62), one deduces that

b ( Pkpk) <0(E2

*~ k
since X O (E). Let p X E v0 in (2.62) and take the limit as c - 0

E

k k k(after dividing by e) to get (2.65). Now let w V which satisfies

kk
k k k k k k k E:I k k k k ka 0 (WEw w)+ a 1(wew)E + b 1(WCW w+O0(E:) E w + X(w w)E

wk c4lw 2 + 1q 2(w k + 0(C)
V 11

from which one concludes that
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k k
p strongly in V.

k co k
For the remaining eigenvalues, i.e., {i }=l' one observes that w

is a uniformly bounded sequence due to (B4) and (2.67). Hence using

Proposition 2.1 one deduces that

k k
a < 0(1), i 0,1 (2.70)

which implies by (A5-A6) that

H., 1. < C (2.71)

for some strictly positive constant C, which is independent of c.

- I Due to (2.67), the following inequalities hold

k k
b ' 0 ) < 0(1), i - 0,1 . (2.72)

In fact, a better estimate can be obtained, by a contradiction argument, i.e.,

k k
b) < O(E) (2.73)

Suppose

"'" k k)

"6 pbl(I = 0(1) (2.74)

for all bilinear forms a.(P,, bi,) i = 0,1 satisfying the assumptions

of the present section. Then one may select bilinear forms (as in Example

2.6) such that

bo(X,y) + bl(XX) = (yXX) , .

Using (2.62) and the minimax characterization of eigenvalues to obtain

,.,. -. .- .- . . . . .. . ...-. .,- .. . .... ... ,• . . • . * - , . . ,
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b 0k, 0 k, 1,as c '0
0 E

k kand hence b 1 (t CW I - 0 as E - 0, contradicting (2.74). Therefore, (2.74) is

valid. Hence (2.64) is deduced from (2.71) using the same argument used in

the proof of Theorem 2.1. NIow expand (2.62) formally in powers of E (while

recalling (2.73)). The zeroth and first order term yield (2.66) for X E V.

Example 2.6:

2 1n
Let H = L (Q2), V H H0 () where Q Q 2U~USCI with boundary

0 1

P r U 1' and interface S, as in Figure 2.1.0 1

Let
n

j=l i j j

b1 b( P) "0 f p ~Pdx ,i =0,1

then (2.62) is equivalent to

k k k k
EAX CO + X E Y EX EO onQ 0

-EAX k+ EX YXk on
El El EEl

xEOh~ 0 xEjp

k k
X =X

EQ El

k k on

ax O D X }:
Equations (2.65-2.66) give respectively
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k1o 0 on P.

k kk 
Ap1 i+i on i

0,

k k on 2
0 1 0 Ol 0  7
i =0 on J

,k oo-.

ki kkliS

k 1
0

k =1,2,....

Remark 2.22:

Once more, observe the flattening of {Po c}~ on 02 . However,f c~ I~

oscillate and attenuate concurrently on QV which ascertain their %.

ameliorated convergence, compared to those of Section 2.3.

Remark 2.23:

Remark 2.7 is also applicable in the present eigenvalue problem.

2.6. Formal Asymptotic Expansions of the Eigenvalues and Eigenveltors of A

kIt was shown in Section 2.3 that { are not analytic functions of c.
e k=l

Therefore,thev do not have an analytic expansion in powers of c. Their mode

of convergence (weak in H) has the most profound impact in solving boundary

value problems. This shall be clearly demonstrated in the next chapter.

%.
. . . .
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" It was also demonstrated in Section 2.3 that {A } are analyticE k=l

functions of E. Thus, it may be possible to expand {X k} as well as their
kc k=l

corresponding eigenvectors {~k} in powers of c."i. ' " €k=l

In the sequel, a formal asymptotic expansion of X and P are derived.
F- C

Then the formal calculations are implicitly given for Example 2.1. Using

Examples 2.4-2.5, some of the difficulties associated with such an expansion

are mentioned.

For notational simplicity, let the index k of the eigenvalues be dropped

and let

.- X] +X 2 2 + (2.75)

= 0 + + ... (2.76)

Substitute (2.75)-(2.76) into (2.5) and identify formally equal powers of E

to get:

-i-. Lemma 2.6:

The sequences {X }0 and { CO= formally satisfy:
Z=l _=

0

0 1 0 
(2.77)

-,) 60 O) I( V1

"" -",a 1  = ,A ,7 (( ,x V0  1 ( x)
i0

-. Ii+l Z-il Z-1
a0(0 6 X) = (P ,X) aI  , X), V X V

i=0

.

. )1,2,...

O ,

.%
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Proof:

The derivation of (2.77-2.78) is straightforward.

Now their solvability is considered for Example 2.1:

Examole 2.7:

In this case, (2.77-2.78) become r-spectively

0 0 on Q
0 0

0 1 0
- X1O l on Q I J (2.79)

0 0

- i+l Z-i-l
- ! X 0 on Q

0 0 0i=0

1
=0, 'PZ S i I 2.0

z=, 2,...

First, (2.79) is identical to (2.31) with the obvious notational change.

Hence one can solve uniquely for X and P. It will be shown that (2..O)

is solvable recursively. Let Z = 1 in (2.80) to get:

•.,I

4' . .- -. -" ° .•-. - . . -o - °. .' .". - " . -. . .- °. -% ..-. o - .•. • % ° -. '
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1 10
- "1(2.81)

S Sl
": 01 ro  0 , -- s

1 1 1 20-x k. i + xi on ,Ql

''i - 0, 1is (2.82)

0
a 1 0. -1/2

The pair {.,;{ 1 is computed from (2.79). Therefore, ;V 1IS

Hence (2.81) is a nonhomogeneous boundary value problem in ;F ( 0;)

1i1 01 1 (from which one computes 0 In (2.82), X 'l0 are known. Let z1 E H(

such that

iz 1FI 0, z I1 S =

Zlir I I~ ~OIs

_- 1 1 -1
and let 1i I - Z Clearly i satisfies

x(-A - 1- Az1 + 1 z + A 2 .2
= Z"i(2.83)

" I 0, 'S 0

By the Fredholm Alternative [42], (2.83) is uniquely solvable for ap in

" provided its right-hand side is orthogonal to 0 in L2(Q i.e.,

U 1 11 20 0 0
z1 2

L

S.

S°
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and consequently,

- - l,02

2 z 1  L 2(Q2x2 =
0 0

IL2 (1 )

Using Green's formula, one obtains

1 O0

2 S aO 0'-v dS
X (2.84)

( 12
L 62)

Using a similar argument and recursively on Z, one solves (2.80) and hence

obtain all of the terms in (2.75-2.76).

Now the yield of the above calculations for Example 2.5 is presented.

Example 2.8: (Cf. Example 2.4)

In this case, one obtains

X k (kir) 2[E + 2e2 + (1 - 2(kTr)2)3 + ... ]
E 3

k k(l+x)[6 + (k6) 22 + ((kr)2 )"+ "(2.85)

k
sin k7x + k(l-x)cos krx c +

k = 1,2,...

Now, some remarks about this iterative process are in order.

7?

. . .. . . . . . .. .. :
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Remark 2.24:

I This process yields a nonunique expansion. For example, the following

expansion is also given by the same iterative process:

X k (kr) 2 [c 2E 2 _ (kr) 2 E:3 + ..

-'7k 2
O -- k (l+x)[F- + +k )  (-c (xl) (2.86)2' 2 3 "(

O k[ sin k x + (l-x)(kcos kx + sin kx)e + ...

k 1,2,...

Remark 2.25:

1It is not easy to compute the terms beyond 0 in the general case.

See [5, 13, 16, 17, 31, 32] for related topics.

Remark 2.26:

The exact eigenvalue-eigenvector pairs given in Example 2.4 for

: "i.particular values of e suggest the following conjecture: the eigenvectors

i o are not analytic functions of e and therefore cannot be expanded
E:k=l

as in (2.76).

*2 Remark 2.27:

2 1
In this example as well as in Example 2.7, X and P do not depend upon

1*"ii ' the choice of .

* In the next example, this observation is not true.

Example 2.9: (Cf. Example 2.5)

In an iterative process similar to that of Example 2.8, one obtains

..., *i*.
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:-. 2 fs d
0 0 (2.87)

"1-.'.:""~ (p , I )L( 1 ).

1 2
L (02l

2 1 1
i.e., p and i depend upon z

2.7 Numerical Results

In this section, Example 2.4 and a one-dimensional version of Example

2.6 are analyzed numerically, using the Finite Element Method, to supplement

the analysis undertaken in the preceding sections. The set 2q = (-1,1) is
2 

i -

of. legh . The roof functions J Oi.}N-lhi=

divided into N equal interval, of length h = i

[39,43] are selected as a basis for the finite dimensional approximation

of H (P). The finite dimensional approximation of the operator A can be
0

written im matrix form as

"Mh."- h
A )Kh (2.88)

where the entries of are

L"" =fo "°hOJ dx<"' ( ij h-h

i,j = 1,2,...,N-1.

In the forthcoming examples, the matrix M can be written explicitly,

i.e.

4 1 0
1 01
14 

1

0 1 4
L .4

..-- * .

"j. .
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r For all computer runs, N is selected so that an accurate plot is obtained

(N is indicated under each plot). The subroutine RSG from EISPACK [36]

". with single precision is used to compute the eigenvalues and eigenvectors

of A
h

F

Example 2.10: (Cf. Example 2.4)

h
In this example, the entries of K are

h dph dph
(Kh). = f a(x) d dx (2.89)

i,j 1,2,.. .,N-1

where

J1 if x E (-1,0)
a(x)

"e if x E (0,1)

h
For N even, K can be written as

2 -1 0

"- Kh -1 N

2 = -+e -E (2.90). % -. , h 2-
-e -2c -

2E -c
"0 -E 2c

i~~~~~~~ ",- .,T e e g n a u s k 2  1
The eigenvalues X , , are tabulated in Table 2.1 for E = 0.1,

0.04, 0.01, 0.001. The corresponding eigenvectors are plotted in Figures

' .(2.3a-2.3d), (2.4a-2.4d), (2.5a-2.5d).
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8.5-1.

Figure 2.3a. v for c -0.1, N 50.

1.5

Fiue2. 3b. fo s 0.014, N -50.
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1 £ J

-12 8i .

.IFigure 2.3c. p for c 0.01, N -100.

S _ __ _ _ _ _ _ _

1.6-

1.8-S~

71gue 2.d. aor .00 , *4 130
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C2-

-

Figure 2.4a. ,2 for c - .,N-50.

-0.-A

F~gre .4b 2 or E 0 .04:, N 30.
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2-

-I-,

T--

9. . 5 1.2

Figure 2.4c. for c 0.01, 1 - 100.

2 - 1 -6 . s f. 0 1 ..

-. 4--' I

z"2ur 2.4d for -I0.0-,N ..

.;:i q-

, - .-. ".. 7.- .. A. -I .-. . - '~
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1.8

-0..

Figure 2.1--. focr c -0.14, -50

At_
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1 t.5- r

-. .i"1 .8-

ItI

•Q. 8.. 2•-. -oS. .

*Figure 2.5c. for c 0.01, N -100.

..9~s

Figur 2.dfrE__01 1

FFIf /i~

-* -l.a -a1, 0 .3 3.S 1.3

. Figre 2.5d. Y for 0.01, N - i00

-t. .,.
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TABLE 2.1. AlX2,vl for c = 0.1,0.04,0.01,0.001E

E

£ C

0.1 0.77230 4.5742 2.3462

0.04 0.36160 1.3715 2.4782

0.01 0.09650 0.38677 2.2153

0.001 0.01069 0.03997 2.2538

.10

It is clear that most of the features described in Section 2.3. are

exhibited in these plots. First, observe the attenuation of k = 1,2

1
as c - 0 on 2 Second,note the oscillatory behavior of as 0 on

k
Q V In Figure 2.5d, the corners do not belong to • They are inherent in

the Finite Element Method due to the type of functions selected, i.e.,

{( N-. Furthermore, one may add that the first eigenvalue-eigenvector
h i=l

pairs are computed more accurately than their last conterparts [17,39].

h 1 11.Consequently, if the eigenvalues of A are ordered ascendingly, ki
C E

is pushed higher and higher as E - 0 and hence computed less and less

1
accurately. Moreover, since h is fixed, the oscillatory behavior of P

would not be captured by this approximation, unless h is made smaller and

hence increasing the order of the matrix A
h

6W
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Example 2.11: (Cf. Example 2.6)

The following eigenvalue problem is analyzed numerically

2 kd X 0

2 k

d X k k k
-e 2 +Xe I  yx on (0,i)

k k
x 0(-l) = 0, Xl(1) =0 (2.91)

k k
X Fo(0) = XEl

k k

dx (0) i (0).- dx dx

S The finite dimensional approximation of the operator A can be written asE

h h
in (2.88) where M is given by (2.89). The entries of K are:

d~ d~c
h 'h Oh ti(K hdx+ j ; dx + f h d x(K i,j = af2 dx dx dh h f h h

i,j = 1,2,...

which can be explicitly written as

2 -1 01 4 1 0
-1 2 -1 1 4 1

h £-1 2. hN
K h  

E + 1 2+2c E + 1 (2.92)
E: -- 2 -1i 4E. - 2"

.. 0- 2 0- "
-j ,

I_"*

il4 i
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The major difference between the present example and the preceding one is

thatk k = 1, and the corresponding eigenvector k- k .k weakly in
6 0 E:0

H (-1,1) k = 1,2.... Consequently, their oscillatory behavior attenuate

as -- 0.
1I 1 2 ..

The eigenvalues X, , are tabulated in Table 2.2 for
C E: P

= 0.1,0.01,0.001,0.0001. The corresponding eigenvectors are plotted in

Figures (2.6a-2.6d), (2.7a-2.7d), (2.8a-2.8d).

1 1 2TABLE 2.2. y, , for c 0.,0.01,0.001,0.000

0.1 0.6279 1.6548 4.555

0.01 0.09148 1.0806 1.4521

0.001 0.01028 1.0100 1.0389

0.0001 0.001070 1.0010 1.0040

From the theoretical results of Section 2.5.3, it is shown that

1- = (0,sinx) strongly in H (-1,1)
E 0

-+ = (sinTrx,0) weakly in H (-I,1)
E 0

2 2 1
"-, = (sin 2Tx,0) weakly in H (-1,1)

and this is clearly depicted in the figures below.

1I" The flattening of ; on 0 is also clearly visible in Fi_-ures 2.6;i-2.1d.

1 2The attenuating oscillatory behavior of * , on is unquestionably

documented in Fi4ures 2.7a-2.8d.

-.............. .

v .'- . .'.-..'-'.-............ '.-. "- .-.. ".-,-" --... --. "- - ,- .. .'-. -.- ,-. .- ,, ; .. .



61

i.2v

1.28-

Fiur 2.a.7foe5-1,N 0

9.5-

-4.

Fgure 2.6b. for c-0.1, N -50.
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1.5-

8.0

-1.0 -0.5 9.8 0.5 1.2
1

Figure 2.6c. p for F. 0.001, N 100.

I.I

-1- . ..5 1.

.0-

" .. " -'..f-or--.- -'.
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-1.0 40.5 . .t2

Figure 2.7a. '1' for e 0.1, N -50.

8.5

1.8 4533 . .

Figure 2.7b. . or s 0.01, N-50.
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8.5-

o

--. 8

-_.U,,

Figure 2.7c. for 0.001, N 100.

1.5

,_ _ _ _ _ _ _ _ _ _ _ ,

-'Fgure 2.7d. or c 0.0001, N 1.30.

S. 

. . . . .J
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1.0-

1.-

Figure 2.8a fo-,0 , 0
9.5

-P I a. 'ai4

Figure 2.8a. 10 for c - 0.1, N - 50.

-- 1.8 1

a -- _-_

rrgr, I. .0, -- 50

-p
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•v v

V.

2-2

Fi.u, .8 . .o .0 , 10

-2-

w V4Q4w4 4q-
-

-1.

..-- 1.8I -. S 8.0I 8l.5 1.0

Figure 2.8c. for e 0.0001, N = 100.

8- -. '- -~

." :

Vi. -1 _ _ _ _ _

.-

I _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _

.2.f......?...I-..T.. j . & 4 4 * * 1

.- -2 ,iur 2.d ~ , r c - 0 I... i

"-'.- . -+ S ; 8 +. '1

*, *.' .. " J * %\''; v ."*.. *v;...,. * *"'. *. ." .* ," i. v ?, , * .-- . . .."+ , .. , -_-" -. i- , . _, .- Y . 4
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Ii Many of the observations advanced in the preceding example are

K" valid in this example as well.

Finally, one can easily estimate the orders of magnitude of the

attenuation and the oscillation frequency of k on 2 " They are O(VE-)
E 1'

and 0(--) respectively.

2.8. Conclusion

2.8.1. Concluding remarks

The eigenvalue problem of stiff operators has been analyzed in

this chapter, via a general formulation using bilinear forms, to avoid

the complexity of explicitly keeping track of the various boundary and

interface conditions. First, the intuitive idea that the eigenvalues of

U stiff operators are of different order of magnitude as functions of the

parameter e, is rigorously verified. Second, many concealed features about

the behavior of the eigenvectors have been exposed, such as flattening,

attenuation, arid oscillation. Third, the convergence of the eigenvectors

of stiff operators as E - 0 has been investigated. This analysis is of

paramount importance, because it will yield insight into how to approximate

boundary value problems involving stiff operators. Table 2.3 summarizes

the properties of some stiff operators.

2.W

L

I A. ..
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2.8.2. Extensions

The concepts used in this chapter are very general. Consequently,

several operators can be constructed from the ones examined herein. They

L can be analyzed using the techniques and the concepts developed in this

chapter. For example, one may combine operators of Sections 2.3-2.4 with

those of Section 2.5 to obtain multiparameter eigenvalue problems. One may

also consider nonselfadjoint operators such as

i: :_ n 0 (x
i,j= 1  j aij~x x.

Ac (2.93)

o°d
iI x a[ - z - (x) --.

k
where a.. (x) is as in Remark 2.9 but°oJ

ak W 0ak
a.k (x) # a. .(x), k=0,1.
a ij j i "

0
The same analysis holds for the selfadjoint part of AE, i.e., A,

The operator A can be written as

h A =A + A (2.94)

.4 .,- I.'
.0

-... . . . . . . . . . . . . ..;H
-  *

A EA°f£(H L) C1))

L96 067 P6A 7( ( ) ( )
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given by

0
na..(x) + a.*(X)

•i.'-.1 'x 2 x .
0 _1
C. 1 1ai. (x)+a. i (x)

0 - ( 3-- ' "
i= x 2

A 0

1 
L a9(x) 3a.j(x) 0i~~jil 

3x x x

3a. . WX . X
1 

.0 2a 1. .( a .( xAs

- 4.

2 0 i,j~ ;X. x jX

-. - . ..

k.
•
•. . . .. . . . . . . . . . . . . . . . . .

4.- - -F --- ... - , - - - --..-.-. *s. - . . .... . . .
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CHAPTER 3

APPROXIMATION OF FORCED STIFF SYSTEMS

3.1. Introduction

In the preceding chapter, the spectral decomposition of stiff operators

was investigated and the properties of their eigenvalues and eigenvectors as

functions of the small parameter E analyzed. One major property which is

summarized below, is the convergence of these eigenvalues and their correspond-

ing eigenvectors as E - 0. It was shown that the spectrum of A is decomposable

:['-]i" k k k kp,s co h h

into two groups of eigenvalue-eigenvector pairs k k with the

k=l k=l
following convergence mode:

k k k
1) k - 0 linearly in e, - strongly in V

, E

- k k k k
2) > 0 , - weakly in H

E 0

where V, H are two given Hilbert spaces, with V being a dense subspace of H,

having a stronger topology than that of H. Moreover, some of the aforementioned

.. eigenvectors are nonanalytic functions of E. Consequently, they cannot be

expanded in powers of E. From these established facts, one concludes it may

not be possible to obtain "strong" approximations of solutions of boundary

value problems involving the operator A..

In this chapter, the above results, as well as those discussed in

Chapter 2, are employed to investigate the behavior of the solutions v

of the following three abstract equations:

A y f (3.1)

t + A v = f , y_(0) = h (3.2)

it

.. -

, , ' . <"":" _ :,- .

" '.* .. ."' .7'." ?- . ' ', .,'"?., ': - --','-J -, .'-. - -:. -. ' . .



-I-

72

+ A v f ,v (0) =h , (0) =g (3. 3)

The occurrence of (3.1)-(3.3) is very frequent in mathematical models of

distributed physical processes such as nuclear reactors, heat exchangers,

chemical reactors, fluid systems, vibration systems, steel and glass processes,

etc. Thus, it is important to focus on them. A logical question to ask is

the following: since the eigenvectors of A are not analytic functions of c,

is it possible to derive "weak" approximations to (3.1)-(3.3) using the weak

limits of the eigenvectors of A ? The answer is in the affirmative, but in

doing so "something" ought to be lost. The major thrust of the present chapter

will clarify this loss for each of the boundary value problems (3.1)-(3.3).

For elliptic problems (i.e., (3.1)), by appropriately modifying the weak limits

of the eigenvectors, one may be able to calculate a "strong" asymptotic

expansion of the solution of (3.1). In so doing, the formal results derived

in [24] are complemented. For evolution problems (i.e., (3.2)-(3.3)), the

concept of weak solutions [23,30] is used to define weak asymptotic

approximation of the solutions of (3.2)-(3.3). Hence, extensions of the

results in [231 are accomplished.

This chapter is organized as follows. In section 3.2, the solution

of (3.1) is derived. The weak limits of and 2 are modified bv
k=1 k=1

* adding to them some appropriately selected functions. The rationale behind

such modification is that the modified limits become elements of V and hence

can be used to derive an asymptotic expansion of the solution of (3.1).

SO -q
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i p In Section 3.3, the convergence of the solution of (3.2) is investigated and a

weak asymptotic approximation is constructed for it. In Section 3.4, ar

analysis similar to that of Section 3.3 for a class of hyperbolic problems

(i.e., (3.3)) is undertaken. In Section 3.5, some concluding remarks and

extensions are presented.

3.2. Elliptic Boundary Value Problems

As in Section 2.2, suppose two Hilbert spaces V and H are given.

The same notation and the same assumptions are kept.

First, the modifications of the weak limits of the eigenvectors are

considered. Then, using these modified limits, an asymptotic expansion of the

solution v' of the following boundary value problem is constructed

- . = f ,fE (3.4)

or equivalently

a0(v , ) + -al(Y,^) = (f,;) , y , V (3.5)
01

From the preceding chapter. the weak limit of :b in H and the weak

limit of 4 kin V satisfy, respectively: I
k k k k-

a0(- 0~ i('. ,), EH1, VXEV (3.6)

a k' *X) = -'kG ,X) k e VV 0  (3.7)

k=1,2,3...

ivelV, V ) is a subspace of H (respectively, 'J) .
*0

.................................................................
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Since E one may add to it a function

-k + + E 2 (3.8) 

where

E H such that k + V (3.9)

.k

It was noted in the preceding chapter that -k and k form an
k=l k=l

orthonormal system in H. Therefore, one requires that satisfyE

k +a (.sk +:k' k k'

a()k + ( + k = 0k ,), Vx -V (3.10)

substitute (3.8) into (3.10) and identify formally equal powers of £, to get:

a(k
a0(E0,X) = 0 , V x-v

a (k, + a = 0 , V EV (3.11)

;=1,2, .....

k,

from which one finds that . obey I
Z=0 ,k=l 2:

K k +rk E V ,VXEV (3.12)

a (:k '' = k k + 0" -0 k' aj>1 <) I .Vao ( z A) = _ a l ( :-' _1  , -,.E-V-

12'I "" 1a (:k,) 0 , g,'EV

(3.13) .

=1,2,...

k- -= 12.. . . •. . , .... . .. .. . . -. - -.. . .- - . ., .- - .. 1,- .- . . . -, ¢ -. -, .. 1-
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S Remark 3.1: It is worthy of mention that the iterative process described by

k
(3.1l)-(3.13) appears to average the oscillatory behavior of

Similarly, one adds to k

k k 2k
-k . + 2k + (3.14)

£1 '2

where

k e V , Z=1,2,...

k
The function is chosen such that

Pk + k" k +k" k kX*a 0 (¢k + ak?)+ aal(; k + 5k,.\) = LA,( ,X) , VE

kk

-.- from which one concludes (using the fact that p V)that satisf

a= 0 0

111Q

k k
a (,0 ) = - al( ,1 ) , (3.15)
Z=2,3 ..,".-'...a (2 ,;) = 0 , V- V 0

k=1, . ..

kGk

R 3Remark 3.2: The zeroth term in (3.14) is zero because ckv

.:.

*_-
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Remark 3.3: The iterative process presented above appears to average the

flattening (and attenuation) of f{

k=l
Before proceeding further, consider the following two examples to

examine what (3.1l)-(3.13), (3.15) yield:

21
Example 3.1: (Example 2.1 continued) Let H =L (,V H H(2)

n

a (P -P) =l E 2 j Vd

then (3.1l)-(3.13), (3.15) become

00 0

0M on 210I

0 _ k.I

k=0 o n
z 0 0

-k - 0 onZ1

0 s.

04 o~ 'nl ~

% P :k 0 , -k .- k

1 -

4-- ki,2,
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S0 0 S

.kk
Ac ~10 __

=00, s S
L

-_e =0 on 2

.k k k
"""lI,= 0 ,ell = elO

1 S S

k.- I~ azo = 0 o n 20  .

k k
'k- =0 W0 S Z-1 1

01 0

k
z= 0 on 2

k 0 z Ac
1l ;S zoS

.3,.
=2 3, ...

k=l,2,

The above equations represent boundary value problems for the Laplacian operator

for each region 2i, i=O,1 to be solved sequentially.

Example 3.2: (Cf . Example 2.2) Let H = L- (), V = H(

."" ... t(# , ) = 1.€ '. dx :!

ai d

then (3.1l)-(3.13). (3.15) become

4:
.- : .. .1

........................................................................................'-



78

-k
0 on P

00 0

,2:"k

01.
n 0 onS

k
k 01

= -- = F 1'

; 01 =O 0 on'1

-k ,k
'01 = 

0 I

, k sonS

Av k

01 0 'J

A2-k

00 on F

00

.k k

k k o S

zo 0 Z-1 I

.2 -k

0A on _ o

%" ", a. =': OO, ,

,,k

Ck k

, OA -_ k onS

5'- " - .

"aZ 0

7; .



!:*7 - -m.

77

SAkO =0 on Q
100

k ' 10
0 - -  0 on 0

10 Dv1

k k

k k on S

2 kS.-o0 "Io n

k

-'..~~~ on 2T o ~

'. k k
'".1 i 10

k k on S
11._ 10

al 3i

2 k
L =O0on Q

~k

k- "'0

Z 0  v 0 on

_0

-k k0
: 0 Z-i 1

k k on S
~20 Z9-1 1

:'. v3'.

"" 2 k
,. = Oon I

k"= "1 = 0 on?

k k

"k .k onS
1 110_

I0

"' I"s' , .. * .

4 I.
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The above equations represent boundary value problems for the

biharmonic operator in each region 2V i=0,l.

Remark 3.4: The computation of these modifications is unquestionably easy,

because the dependence on the parameter c is eliminated.

Now attention is focused into obtaining an asymptotic expansion of the

solution of the boundary value problem (3.1) using the modified weak limits of

the eigenvectors of A

It is noteworthy to indicate that (3.4) (or equivalently (3.5)) has

been solved in a more general context than here in [241. Therefore, only the

details pertaining to the present approach are given.

In the next theorem, the usage of the modified limits is shown.

Theorem 3.1: For sufficiently small E, the solution of (3.4) is given by

k k
c k k d k k(k + ) +( + ) (3.16)

k=l 0 k=l

where

k" and 0. k k. "
1 k=l and 1 , k=1 satisfy (3.6)-(3.7)

M and {k 1  are given by (3.8), (3.14)

.'i. 00 k k m
-c } and fd are the Fourier coefficients of f, i.e.,

k 1 k=1

ck = (f,k) (3.17)

k k
d =(f H(3.18)

H . .
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k kO ',o

Proof: The eigenvectors ik k= I and I k=I form a complete orthonormai
I

kk,1k ' k l

basis of H and k + k e V, + k V by construction. Now it is a matter

of verification that (3.16) is the unique asymptotic expansion of y_.

Remark 3.5: Truncate k and k to the pth term and denote these truncated

" series, respectively, by k and 4k,p Define ep bv

ep = V p

where
00 k M k

p - c k k,p d k )
y + ) + k + Lk)

* ~k=1 P 0  £ k=1 l

Then it can be shown ([24], p. 13) that

II ePIl < C p

E V-

where C is a constant independent of E.

Remark 3.6: Note, that if the forcing f equals k (respectively, k ) then v
becomes + k (r1se +tik ) This clarifies Remarks 3.1,".'" k(~ k ) (respectively, - ( k 2)

~l 0

Example 3.3: (Examples 3.1-3.2) In this case, (3.16)-(3.18) become_I

k k
C k +.k d k

-F0 = ' - 0 +-0)+ k >-0'
k=l 1O k=l

4 k k 0 k
S-k + d k kk A1

)

% k=l k=

00
Note , are renormalized in H.,. . k=l
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where

k k (f k
c = (f = (f 0 , 0 )

L (Q) L (20)
0|

dk (f = (fl" ) 2
2 L ( )

k ke are computed in Example 3.1 or 3.2.

Remark 3.7: Note that lim Ily 01 is finite but not lim 1v 11
0 L2 ( ) "l

Remark 3.8: By examining (3.16), one concludes that the group of eigenvalues

that accumulate at zero as E -* 0, i.e., k causes
k=l

lim iVI +
-0 E l L2

Remark 3.9: The eigenvalue problems considered in the preceding chapter can be

interpreted as the boundary value problem (3.4) with f depending nonanalytically

k k
on c, i.e., f = f(x,c) = vx. However, it can readily be seen that the process

by which (3.4) is solved, is not applicable in this case.

Remark 3.10: If f were analytic in and hence expandable as

0 1 2 2f f+ fl + Ff- +..

then using the above procedure, one can solve

r rA y f r=0,1,2_..

to get an approximation of the solution of

| ." . ,

. P.. "
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AyC f

which would be given by

=C Y + Ey+ E:2 2 +
E E E

This section is concluded with a simpler one-dimensional version of Example 3.1.

Example 3.4: Recall that Q 0 = -,) (0,1), S {0} r = -1 F {l1h

It was shown in Example 2.4 that

k 2 k 0on 0X=(kir) ,; =0

1' { sin Ix on Q 1

k 2 k I
=4 ((9-k-1)7r), co

The modifications outlined in section 3.2.1 are

k (-) k~ v"' (1+x) Oi0

= { k+Z v(-1) V yA (1-x) on

*~~ ~~ 0n = 1 )- -6l

k [(10+- ~(+)o
* (_l) k-lv (1-x) on Q

_=1+ 2,on

k 0

4.'L-

v7 ( - ) n 2

Let f. 1. in(.) hnyasgvnb 31)i



84

ik-i I

= E [cos Vz x - (1)]
0 k=1 (,pk 3/2 i+)-

0

+2 2 /k (;)
k=1 k 3/2 I+c 1

(3.19)

k-i
2(2l)- (1-x)

y lk 3/2 1+ck=1 (-)

cc k51+ 2 -(-l)kk ~
+ k- (- [sin + _v (l-x)

+ 2 k k32 1 l+E 1
k=l c )

where no simplification is made to allow the origin of each term to be identified.

The exact solution can be computed directly and is given by

2
_ x + i- +V-+---x+ -- _

£0 2 2 1+E l+ c

9(3.20)

x 1 1--- 1_ -+i i -  +

-1 2c 2 c(1+) +---

It can be easily shown that (3.19) is identical to (3.20).

Remark 3.11: The generalization of the techniques presented in this section to

include p+l (p>l) bilinear forms is straightforward (Cf. Section 2.4).

Remark 3.12: Similarly, the techniques of this section can be applied to

boundary value problems involving some of the operators discussed in section 2.5.

3.3. Parabolic Boundary Value Problems

In this section, an evolution problem of parabolic type is considered.

Hence let the variable t denote time. It is assumed that t C (0,T). T and

that all the assumptions made in Section 2.2 hold. Let L(0,T,V), L-(,T;H),

; .. .¢ .. . .. .- -. . -. ., . . - . . , -.. .. . - . . . .- .. . - . . .- - - .. . . . ,.. . - ,
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2
r4 L (0,T;V*) denote the Hilbert spaces of Lebesgue square integrable functions

of

with values in V, H, V*, respectively (Cf. Appendix). Let prime denote the

distributional derivative with respect to time [30] In the sequel, the

IJ_ :following parabolic boundary value problem is analyzed

E(y',V) + a 0 (y,,P) + ca l (y , P) = (f,,P) , VEV (3.21)

y (0) = h , h given in H (3.22)

v E L2 (0,T;V) f G L2 (0,T;H) (3.23)

Under the assumptions made, problem (3.21)-(3.23) admits a unique

2
solution y_ E L (0,T;V) [30] Using the results derived in Chapter 2, the

-.' convergence of v as z - 0 is studied. Then an asymptotic appro:imation of

4 y, is constructed and an asymptotic error estimate is derived.

3.3.1. Convergence of y, as - 0

k k ~ k k
As in section 2.2, let \k .,} and { k_, ,' be the exact

"k=l k=l
eigenvalue-eigenvector pairs of A with the eigenvectors normalized to one

in H.

Let

v = c k(t) k + Z dk(t)'P k (3.24)

k=l k=l
k k k 3

." f = (f,' + Z (f, ,3.25
k=l k=l

k k k
h = E (h, + (h,) (3.26)

k=l k=1
•~~ ~ .- k~ " k-

Substitute (3.24)-(3.26) into (3.21)-(3.23) to find that *c - , k

k=1 k=1
satisfy the following ordinary differential equations:

.,si•°'- -
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dc
k

C kk k k = k (.7+ c = (f() (h, (3.27)

dd 
k

+  d = (f,k) d (0) = (h, k (3.28)
at CEC

k=l,2,...

whose solutions are

k -t kk(t) (hk) + e - t (f ,k) d- (3.29)

0

kt) = e (hk) + k d (3.30)

0

Using Theorem 2,1, one concludes with no difficulty that

y _ v weakly in L(0,T;H)

where

V k dk k

c +  d kk (3.31)
k=l k=l

-- : o k -- k-,
are the weak limits of r (respD~itive-v,

k=l k=l k=l

) in V, (respectivel, in 1) given bv ('+ J2) (respectivey, .23
"" ' :k=l "

kk 1
*k k k

ck(t) = e (h,) + F e t (fk) (3.32)

0

k k kdk(t) = (I k) + (f,;k) d- (3.33)-e. U

-;- . . . . - -' -C- . -
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S -he preceding discussion is summarized in

Theorem 3.2: Let y denote the solution of (3.21)-(3.23). Given a sequence

of e converging to zero,

p2
ye y weakly in L2 (0,T;H) (3.34)

where y is given by (3.31). Moreover,

V. I y c (3.35)
L(O,T;H)

C is a constant independent of C.

. iProof: Use the eigenvalue-eigenvector pairs of the operator A and their

properties,as described by Theorem 2.1,to obtain (3.34). The estimate (3.35)

S is then readily derived by employing (2.21).

' Remark 3.13: The convergence of y in Theorem 3.2 cannot be improved (cf.

Remark 2.7). Also, it should be emphasized that { in (3.31) are not
--* k=l

renormalized in H.

3.3.2. Asymptotic approximation of y,

" - It should be noted that the method by which stiff elliptic boundary

value problems were solved in section 3.2 does not yield an iterative process

for evolution problems in general. Therefore, one would be content to obtain a

"weak" approximation of the solution of (3.21)-(3.23) using only the weak limits

.- of the eigenvectors of A

£ I

._.. . . . . . . . . . .~ . --... . .. ..* C ..... ... . . . .. . .. .. .•• . . . . .
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In the sequel, only a more general version of Example 2.1 is considered,

i.e., the operator A is written as

-A 0]
A : 0oAA = , 0< «1I

where

n n

i=l j=l j j

kk

a.. (x) satisfy the conditions of Remark 2.9. The chief reason for this digression,:jiJ

is that one can explicitly specify the regularity conditions of the functions

involved in the construction of the approximation of y . However, the concepts

involved herein are equally applicable to the general case.

First, the following notation is adopted in the sequel.

Qi = 2i X(0,T) , i=O,l

Z = r X(O,T) , i=O,l

R = S X(OT)

0 00 "
Now, let the zeroth order approximation be denoted by y (y0,yl)

and defined as follows. Let E -* 0 formally in (3.21) and retain the following

part

0 0 A = f on Q (3.36) -

0 ~ 0  f0  0

y =0 on Z
00I

0- 0 (3. 37)

Y = 0 on R
A0

0...
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y 0 (0) h0 on 2 (3.38)

0
The solution of y0 of (3.36)-(3.38) is regular. Actually,

y0 E L2(0,T;H1(Q0;F0)) C L 2(Q0). Hence y0  E L 2(0,T;H 12 (S)) C L 2(R).

0 0 00

Let the second part of y satisfy

'4.

atcl + 1 E f1 on Q1 (3.39)

0
" l 0 on E

(3.40)

y y on RJ
e0 0

0
yl(0) = h1 on Q (3.41)

Problem (3.39)-(3.41) is a nonhomogeneous boundary value problem. Consequently,

0
l has meaning in a weak sense using transposition [30]

0

Since the zeroth order approximation y is weak, one rewrites (3.36)-?E

(3.53) in the proper form, using transposition as follows. Let

2,1
%X: X E) , Xo, O  = 0 ,Xo(T) =0}

.. , 0 0

6l "X' 1(Ql : = 0,H2 0 X (TQI) =l01

Now consider the following isomorphisms

X' 0 Xx 0x0 frm fto
X0 - +AoX from0 to L (Q (3.42)

04 .00

.*.,

74:.~
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X1 l
- l  1 3 + fo itL 2

X - EAXI from to L (Q) (3.43)

0
By transposition, one concludes that X0  -

- M (X0), being a continuous linear form "-

on (D (endowed with the topology induced by H2'I(Q0)), there exists a unique0 L200

0 12y L such that

4,if 0

QY0-  oXo d + (x0) , VXoE0 0  (3.44)
0

and

M0  - y0 is a continuous linear mapping of-

!! 2
f:, j- - L (Q0) (Cf. Remark 3.14). (3.45)

00

F ,Similarly,

X 1  E (Xl) being a continuous linear form on (D (endowed with the

I1 0 2topology of H' (Q)), there exists a unique yE L (QI) such that

I Y ( X + EAx) dQ0 = M(X) E (3.46)
1

and

M1  y0 is a continuous linear mapping of - L1 (Q1 (3.47) ,

Remark 3.14: Since C (Q0) 4 D0 the dual of 4t is not a space of distributions.

0 0 0

" Therefore, the introduction of E is required to interpret duality [30] "

'0

4 -,

I%



91

Select M0 (x) and M(x) as

M0 (x0  f f X dQ0 + f h0X0(xO)dl (3.48)
QO S1 "

11 a 1 dR3.9""

M (XI) = f flXldQo + f hlX1 (xO)dQl - f y - dR (3.49)
Q i R A

where

2 2f E L (Qi) , h E L (Qi) , i=0,1 . (3.50).1.:i i 3

Theorem 3.3: Given f h as in (3.50), M , M as in (3.48)-(3.49), there exists j
0 0 0 0 L2  0 e 2 ""

a unique y = (Y0,y0 I) with y E L(Q 0)' Y0 L(QI) such that (3.44), (3.46)

"J are satisfied.

Proof: It is easy to verify that the solution of (3.44), (3.46) is identical to

that of (3.36)-(3.41). Let X E Cw (Q) in (3.60) to obtain
* ~0 0 0

M0 (Xo) - foX 0dQ 0

and hence

"~~ ~~ - o 1o .x o'o
Q YO(- t + AOX0)dQ0 -f f~x~dQ0 , x0  CO (Q0)
0 Q"

which yields (3.44). Now multiply (3.36) by xOE¢ and apply Green's formula to

get p

0 0
".f fX dQ0  f OX (x + O X0 dR + f y0(- 3- + AO0X)dQ0

0 R A0

-, Hence by comparing it with (3.44), (3.48), one can obtain (3.37), (3.38).

:4.
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Likewise, one can easily verify that the solutions of (3.39)-(3.41)

and (3.46) are identical. Now an error estimate between the exact solution of

0(3.21)-(3.23) and y is derived.

0Theorem 3.4: Let y be the solution of (3.21)-(3.23) and y the solution of

(3.44), (3.46). Then, for sufficiently small E, one has

ly -y 0 C 1/2 (3.51)

L2 (Q) -

where

Q = Q0 x 1I

C is a positive constant, independent of E.

Proof: First, rewrite (3.21)-(3.23) in the weak form, i.e.,

)0  Eyr - + AO0 )dQ0 f xdQ + f h0x0 (x,0)df0 f __(
0 = 0tx d0 0 $ X0 dR, (3.52

0 0 0 0""

f Yl(- +--- EAIXI)dQ0  f lXldQl+ f hlXl(x'0)d - dy 1  dR' VXIE I  (3.53)

Ql a 1

Subtract (3.44) from (3.52) and (3.46) from (3.53) to obtain

K' 0.= _ ___ "~~p. (Y. -Y 0) (- -- + A0x0)dQ0 =- __

- 0 U x0dR, VX E< 0  (3.54)

0 l 1

f (Y- -- + EAIX)dQI = - f(Y 0 - 1 dR, VXIc- (3.55)

Ql R A1

where the following interface condition is used

U.j

* * .- ~ S
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I:! y l

"Y 3Y on R- "" " " BXE0 El)A
av 3
A 0 A1D0

Let

>N0(X 0) = _ f Y(.56-N (x AO (3.56)

N I = - ( 0 - Y

R A1

Since yE y weakly in L 2(0,T;L 2())(= L 2(Q))

SE L 2  2 < C
L 0T;L2(0)) -

then

' "E" 2 -3/2

-. .V R E L (0,T; ()) (3.58)

since y0 E (0,T;H (0;0F0)) C L (Q0 )..
"' "y ,1 2

' ~ thn0 2  12S) 2 -12((359
S.. E L(0,T;H S)) C L (0,T;H- ()) (3.59)

From (3.58), (3.59), one deduces that xi I-+ Ni(x.) is a continuous linear form
Eli

on Di i=Ol (3.60)

land

N0 -Y - 0 is a continuous linear mapping of L2(Q0 (3.61)

E EQ 0 0
", 1 *w *. 0,.

I0
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N1  y - V
0  is a continuous linear mapping of *J L 2(Q1  (3.62)

Now consider the following equations:

3tE.- + 0

xv +A 0  0 yoQ
1 -- Y aon i o im n f(3.63)

ax E

'0 R 2(1

"-" = 0 on0
A0

X£0 (x,T) =0

xl
- +AX =YO - YO on Q

Xao =0 on Z

(3.64)

-- , 0 on R

x, (x,T) 0

Since the coefficients of A. i=O,1 are assumed to be sufficiently smooth

0 e 2  2 0 2 2
(Cf. Remark 2.9) and y y (0,T;L (Q 0)) y - L L

£~ : 0 O 0 1

one concludes that

XEi E (v i=0,l

S.."

Let. X064 in(.4"n",in(.5 n s 363,(.4 ooti

" " ~~ 1/2:0onR ..

• -.., >1

L2(0,T;L

.& °°i- '. ~ .~. aSa. ~ . - y l .* C 1 /.
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y -y 0 11 <L2  C 2 E

where C1 , C 2 are some positive constants, independent of E. Hence,

yly y L Y Y 2( + 11y y 2 <C 2 C
L (Q) L W(Q0)

Remark 3.15: One ought to mention that (3.51)holds for E small, but strictly

positive, because of the heavy reliance upon the fact that the solution of

(3.64) belongs to i" It is easy to see that if one sets formally E = 0 in the

binL2 2T
first equation of (3.64), its right-hand side would be in L(O,T; (2) but

x i_ for e = 0 would not be in I"

" *.." Recall, that it was shown in Section 2.3 that the eigenvalue-eigenvector

k k} kk
pairs of A, i.e., {y E X are decomposable into two groups {X P and

Uk k~ co k=l k~

k=l

1 k .oThe normalized weak limits (in H0 (2)) of {'}P ' satisfy
- k=l

'- o 0V 0 on a0
0 0

k kk
= on i (3.65)

k = ,k 0
' 1 S 0

k-i,2,...

The normalized weak limits (in L ()) of {k o obey
k=l

"S
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A0 .- o = o ko

k = 0 on '
" 0 1

k (3.66)

0 1' .0 0
I - "A S*0
0

k=l,2,.

Then the solution of (3.44), (3.46) may be represented uniquely by

0 k k- C
.::':":,',y = c (t).0  -

k=l0

(3.67) .
k 2 2 T

0 k kvz Z d (t),P
k=l

T (3.68)

dk L2 (0,T), E f [dk(t)I 2dt <E

k=l 0-I

. k k
In order to determine c (t), d (t), let

k 
1x 0 (x,t) = i(t)¥ 0(x) , e E C ([0,T]), 2(T) = 0 ( so that

k1
X (x,t) = () ,v E CI([o,T]), )(T) = 0 (so that E

in (3.44), (3.46) to get

T k + k T k k
.dt 0 0)dt f (f0 '0) (dt 0, , (0) (3.69)

o. 0

1wh
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dk(_ dv k ( k k Zr
..d (- + Xlcv)dt = (fl,1 )vdt - (hl,p)v(0) - : f(E c - dS) ,\dt, (3.70)
0 0 0 Z=i S A1

which are equivalent to

dck k k= k-h dt + 110c  (0 ' 1 )

+ -c =.(3.71)

k k
c (0) = (hoip)

Z=l S Aw, U= A (3.72)

k kr
d (0) =(h- ,

Remark 3.16: Using the terminology of singular perturbation, one concludes that

(3.67) represents the "fast" subsystem, while (3.68) represents the "slow"

subsystem driven by the fast one.

0 0 has meaning in an "average"
Remark 3.17: Note that y y

. S S

e .' 0,-\ sense. Hence, there is no contradiction in representing y1 on S with the aid

k
-of k, which are null on S [23].

~'8 Iff (,f ad 0 an hec
Remark 3.18: If f (O,fl) and h ; (0,h ) then y = 0 and hence y (0,T;

1
H (0)). In conjunction with this remark, one adds that if Q0 is the empty

0 0

set, then problem (3.21)-(3.23) degenerates to a problem analyzed in [24].

Remark 3.19: At this point, it may not be clear how better convergence of

0
y -y (as evidenced by the estimate (3.51)) is achieved. Due to the weak
yE -E. .



98

convergence of C;k} in H, by taking the limit as E -0 Q in (3.2l)-(3.23),
k=l

9
" something of 0(1) (in L-O,T;H)) is lost from y_. However, bv renormalizing

the weak limits of ,'p }  , i.e., Q } , this deficiency is corrected.
k=l k=l

kIntuitively speaking, this action amounts to saying: since i converges to

2 kzero weakly in L (2 keep all of the energy associated with in region

It is noteworthy to report that this phenomenon does not occur with {ik y

k=l
because they converge weakly in V (hence, strongly in H). Therefore, their

weak limits are automatically normalized. However, - 0 linearly as a - 0.

.4 k '

Hence, A must be replaced by its asymptotic equivalent, i.e., \ E, and not

its limit, to get a better estimate. At present, consider the following example:

Example 3.6: (Cf. Example 3.4). Let f = 1, fl 0, h = 0. Then (3.21)-(3.23)

become

2
Y E0 Y '_ O 

'0= on (-l,0)X(O,T)

9 J"

3l £ 3 = 0 on (0,1)X(0,T)
Sx2

Y0o(-lt) = y1 (lt) = 0 (3.73)

yv(Ot) = y(,t)

i x 0 ,O t) =l -- (0,t)

Yo(X,0)= yl(x, 0)' 0

...... ....... .. '..- - - ... -% . . ' ' -.-.-, . ... = ,,.-,,. -. - . -. .',
,
" " .-.. ' - ,-.," - , ,.,
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S . Recall that

k T2
WO ((2k-1) -)

2I
,k = V-cos x

k 2
x (k7T)

S.. kp1 = /2 sin vix . I
The solutions to (3.71)-(3.72) are easily computed and are given by

k k ()k-l k
c (t) = k 3/2 (1 - eIot)G k. (0 ) 3/2

dk (t) = 2V2(-i)p-i 1 0 ekXit

2=1 Gz ) 3/2 (,kl1/2( Z- k

. 2(_I) (X-i (Xk)1/2 z

. + C e 0 / t -at
2= (2)3/2
1 2=i ( ) o - ix 1E

0.
Consequently, y is written as

.O k-i k'i "0 -l ) e-potIk
Y(-O (/ - e ) cos /1 kx (3.74)

0 = k 3/2 0p

O k20 4(-i0
.I kLi z I 3/2 kl1/2 (i 0 k e-i t sin 2.

vo 1 (3.75) |

a, a, ( k 1/L2 sin '
_______ 1 -1jOt  sin /X 1 X

il .:.+ E E L (1)- 1 /

k Z 3/2 k e

ki 1 - ..0 0 .

.4 :: .
*5o!

%I

'% % " " " "" " " " "","" "" " " " " " " %" ""'"'' " """ "" "' ''% '" " ",' " " "' " '' ' .. . "" " l 
" - '

-.
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0Remark 3.20: Observe that Y0 contains exponential functions, decaying with rates

k 0 0
L10. Therefore, y 0 represents the fast subsystem. In contrast, yI contains one

slow component and a fast one.

0 L
Remark 3.21: Note that y 0 0 in L(2I)Q in this case, which makes sense. See

numerical analysis in Chapter 5. G

One may proceed further along the same lines, to derive higher order

2
approximations of y, in L (Q). However, it would be difficult to justify a

better estimate than (3.51). For example, in order to ameliorate the counterpart

of (3.54), one has to show that

Td y- 0 as c - 0

A A 2, -3/21 1 L (0,T; H (S))

which is, by no means, trivial.

Consequently, no attempt will be made to pursue this any further.

3.4. Hyperbolic Boundary Value Problems

In this section, an evolution problem of hyperbolic type is investigated,

namely, the following boundary value problem:

(y" ,X) + a 0 (y,x) + c a(YX) = (fX), VxEV (3.76)

y (0) = h, h given in V (3.77)

-Ev'1(0) =g, g given in H (3.78)

22 2
y E L (0,T;V), y'E L (0,T;H), f E L"(0,T;H) (3.79)

The present analysis would be parallel to that of Section 3.3. Hence,

tce
the convergence of y as c -+ 0 is studied. Then a zeroth order approximation

'I+

. 2. - . .
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of v is constructed using the weak limits of the eigenvectors of A (i.e.,
E E

the operator associated with the bilinear form a ( ,i) = ao(V,) + E a ( "O
(C0. Chapter 2). It is well-known that hyperbolic boundary value problems

are more complex than their parabolic counterparts. Moreover, not all

eigenvectors of A converge in V, as proved in Section 2.3. Therefore, (3.76)
E-

has to be specialized to second order operators AE: so that one can specify

exactly what is needed for the present analysis to hold true.

In the sequel, the following problem is considered

" + A0 Y 0 = f0 onQ 0

2 + J".(3.80)
at 2 + E A 1 Y f on Q 1

- 0 on E0, Y 0 on E1  (3.81)

y c=y E

ay ay on R (3.82)
" . 3YV 3YV.

A, 0 A A

0 1

y (0) h(=(h0 ,hl)), h. E H (Pi), i=0,l (3.83)

@22

att

2 2
f E L (0,T;L (0) L (3.86)

where L 2

where the operator A is as in Section 3.3.
S

.......................................... ,
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3.4.1. Convergence of y, as E - 0

This subsection commences with the statement of the convergence theorem,

and then a constructive proof of it follows as in Section 3.3.

Theorem 3.5: Let y be the solution of (3.80)-(3.86). Thengiven a sequence of

E converging to zero,

y - y weakly in L2 (0,T;L2(Q)) (3.87)

Y Y weakly in L2 (0,T;L2 ()) (3.88)
at at

Moreover,

*E L (IIY L2 1,T;H ))  (3.89)

C is a constant independent of E. p

Proof: Let { k kp and {pk,¢k} be the exact eigenvalue-eigenvector pairs

Ek=1 k 2

of A , with the eigenvectors normalized (in L (2)) for fixed c. Using a finite

dimensional approximation of y such as

in mm k k dk  kY = E c : + Z d (3.90)

k=l E E k=l £ E

it is shown in [23] that

m 2
y E y E strongly in L (0,T;H(2)) as m + (3.91)

y m Iy
2 2

strongly in L (0,T;L GO) as m + (3.92)at ;t

4,• . . . . . . . .. . . - . - - . - . . .. " . - . . ". . . " - ....- - . .- .. " ' ' : i
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where Go¢ =O k d k

yk +k (3.93)

*'2". iii  k=l E k=l

{c k , {dk }0 satisfy the following set of ordinary differential equations
=C' k=I  £ k=l

2 k
d C

E kk k
-" + U c = (f,w)
t2  £E E

k k
c (0) =(h, P (3.94)

dck
C k

-(0) =(g" P )

2 k
d d

k k k

d k(0) = (h, P k (3.1a5)
E E

-d d

dt (0) k

-..-. k.ld 2 ..

whose solutions are given respectively by

k k
k- ( = (h, k )  (g k T (3.96)

ep ck C 0t Co 1 nVjEt+f k f,)dt (.6

k

._k k k k _E kd(
d (t) (h,,P Cos VX t+ sin t + (fC k 3.7

E E "k E /VXk E

Remark 3.22: Since f E L5(0,T;L (2)), h = (hh) E 1 ( H (Q and

2 t (O) =)(glk

1" 0 0 1p

g E L2(2), the following inequalities hold

. .. * -.

.221... .,-'. v v ~ '" "-" ". : .."..,,.- . . ". ",, a , - - - - - - -.,.-. -. . . ' " "- .2-v '. .. , . . ., , - • .,. .. ,.,. ,. .. .,v ,,:.,. .,, ,', , '.- ' , . , , . C , ,., , .. , * . . . . .. ..
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Z f (f,~ + (fp ) )dt < (3.98)
k=1 0

k

Z (h,p)11 < 00 Z (h, P )- < 0(3.99)
k=l E: E k-1Cl

00

S((gPk) + (gok 2  
<0 (3.100)

k=l

Now, let E be a sequence converging to zero. It was shown in Theorem 2.1 that

k k k k 21) U > 0, ~p~ weakly in L (Q) (3.101)

2) X : 0, linearly in E, k 6 k strongly in H ()(3.102)

from which (3.87) is deduced.

Differentiate (3.93) with respect to time and take the limit as E - 0

using (3.101)-(3.102) to get (3.99). This limit is well-defined because of

(3.98)-(3.100), which hold as e -~ 0.

Gonsequently,y can be written as

00 00

y Zc k k + Z d k (3. 103)
k=l k=l

where {c k 10 (d k~oo satisfy (3.96)-(3.97) after letting c - 0, i.e,
k=l k=l

k k k si u 0 tr k
c (t) =(h,,p )Cos vp t + g sin /pkt + f (f"P )dT (3.104)

0 /1~k 0 0 /l
0 0

k k k tk
d (t) =(h,'p + (gp )t + f (t-T)(f, P )dT (3.105)

0

Now using (3.93) and Theorem 2.1, one obtains (3.89).
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Remark 3.23: Note that {qk } in (3.103) are not renormalized. 0

k= 1

3.4.2. Asymptotic approximation of y.
~0

In the sequel, the zeroth order approximation y of y is constructed

using the same approach as in Section 3.3. First, renormalize {k} so that
k=l

what is lost by taking the weak limit as e 0 in (3.91) is regained. Then an
• 0

error estimate is derived. An outline on how to solve for y using the weak

limits of the eigenvectors of A is also given. At the end of this subsection,

an example is solved in detail.

0 0 0
Let y (y0, YrI) be defined by

2 0
aY 0  0

+ A0 y 0  f0 on Qat2

0
" Y 0 on 0

0

a = 0 on R (3.106)
aA (316
0

S(0) = h0 on Q
0, 00

aY0

-- a(0) go on 2o

.7

.%p

,1
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2 0
Y_ l 

0--- + E AI Yl 
= fl on Q0

2 A1  Ed 1 '1at

0
yeI = 0 on E

0 0
Y = y0 on R (3.107)

El1 0 3170
y-l(0) = 1 on Q0

a-() g in Qi

Problem (3.107) is a nonhomogeneous boundary value problem. Using transposition,

0
y 10 is defined in a weak sense as in Section 3.3.

0

In order to derive an asymptotic error estimate between y and y0

they need to be redefined using transposition. For this purpose, let
x

x0  2(Q 0 2

x 0X E L2 (0,T;H , E L ?-- + Ax L (Q) X0  0 on 0Os

;x X

0 - - AX I  (Q),
0 on R. x(x,T) = 0, -(x,T) 01 (3.108)

A
0

=E
2  1 2(Q 2

1 {1:x1  (0T;H X--- L ' )Q9 X + A~x E L (), 1=0 onE R

1 2

0
It can be easily verified that yE y E satisfy

2
i  is endowed with the topology carried over by the mapping

2i E t2(O,T;t2(2i))! Xi, i=0,1.

.'. "," " " " ' ''- '" '' " ' '' '" " "' " " " ' " ". "" " • "" " " " " " "',''"''.' " ' ' " " "' " ' '%' '.1
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2X 0 axO
" 2 + AoX0)dQ0  f f0x0dQ0  f h 0 (xO)d20

ED 2(- 0 0 :~~0 0d 0at,

ay (3.110)
0 :-,0,)d

Y,:,(~ + E: 'Ix )dQ1  f f S01dQ , f h1  -5- l-(x,)d

1 R 1a1 11a

2' . 0 a0gx0()f0 + dQ S AI 0 dR 0 -I ax

-
0 

(3.112)

i ' + S glX0 (x,0)d.S2, VX(

"00 xQ - I h0 I--x,)

1 ' 0 •x)Q If x

(3.113)

+gOX(XO)df1 -0, 0  dR, VXE

xA

01

.!i0 2X0 axl

.,- S ( :- + A=~Q S fXdQl -f h --- x, 0)d I

T3tb s n(3.h112)

;' .. + f glXl (X,0)d2Ol S y6,0 R

sufficiently small £ the following estimate holds 
-

Ilyj - y 2 C 1/4

S 
S

-x

+ X*~QY0 a 1 L R ( D 
(3.11 3)

.., .-

.9 av

*. ,,.

E:4
-r.

0; 1/

..
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Proof: Subtract (3.112) from (3.110) and (3.113) from (3.111) to get:

(y (Y)0 - 0 + A0X0)dQ0 -e f 7,AI X0 dR (3.115)
QO t  R A1 1

'fi10 321 0.Ixl1(y I-y ) (-- +eAIx 1 )dQ=- I (y 0 - ) 1 dR (3.116)
El 61 a t 2 +R ,ld, O 0a

R 1

Now consider the following equations

2
axEO0

2 - A y _ yo on Q0
" ~~ " - A0 Y 0

at

x- 0 on Z0

COx0

-= 0 on R (3.117)
a)A

X£0 (x,T) 0 on Q0

3x 0
-x,T)= 0 on Q

dXi 0

a-,~ + A 0 n1 t x AXl Y 1  Y on Q,

4 X 1  0 on Z
El 1

.ON 0 on R (3.118)

-'-"XI(x,T) : 0 on Ql

@;1

t (x,T) 0 on 1
at 11

[-.4

-.. % ,.'.' ,'.'..".e . .'j¢_ '_ ;.. , - ., ,% ,j~ ., .'- r t " _ .' ' . ' '. * '. .*. . . * " "***- ""- .- . " " .' : ' .*
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It can be shown [30] that

"x>' E" (Di it0,1 (3.119)

Consequently,

x2 1/2
E E L2(0,T;H (S)) (3.120)

IR

- El E L2 (0,T;H-/2 (S)) (3.121)
3V AR

From (3.89), one concludes that

ilR

-"E ""YEO < 2 C1/

Let X0 = xEO in (3.115) and X = Xel in (3.116) and use (3.117)-(3.118),

(3.122)-(3.123), to get

1 011 
1/4

2 <C 3,0 0 L (Q0 ) (3.124)

0' 1/4
" e YY1L 1 ) < C4  (3.125)"--"~ ~ -YIL(QI )

and hence one obtains (3.114) using (3.124)-(3.125). 0

Now the weak limits of the eigenvectors of A , i.e., (3.65)-(3.66) are
k=

- employed to solve (3.112)-(3.113). First, renormalize {,} Then, the
k=l

solution of (3.112)-(3.113) may be represented by:

,5,

4..

5_-.I , ,- ' ~ W .
t

" f Il'i , L |. . ' - : 1 [ ' - . .. .--
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0 k  k[-"'"YO c r 0
r -.. ,,k=1

.(3.126)

k E (,T), , ckt)I

k=l 0

" 0 0

y E E1p
k=1 l

T "(3.127)

dk E L2(0,T), E f dk(t) 2dt <~k~l 0 :'

k kIn order to obtain c (t), d (t), let

k 2e
V..... X(x,t) 6 e(t)4o(x), aEc 2([0,T]), 9(T) d-(T) 0

_"k 2 dv
x 1(x,t) V(t)0p(X), W VEC ([0,T]), v(T) -(T) 0

in (3.112)-(3.113) to get

T 2kT k T kde (3
(--9 + Idoe)dt = f (fO,1k)6dt (ho,) -0) 0(go )() (3.128)o dt 0

0 (dt 0

T 2T d

od( - + X1 t hl~pv)dt =f (f 1 ,p 1 )d k kh,~ V-(0)
a t 0

T co
+ (glOp 1 (0) - " ( z c f '#0 3-dS)vdt (3.129)

0 Z=i S A.

which are equivalent to

d2c k  k k k+ c (f0, 0)
dt

k k
c (0) =0(o O  (3.130)

kd -- 0)d k "  (go" k) -

,, . ..dt (

?" .. . . .. .. . *., • * . , ** * . . . . . .. . .~ . . . . . . . .-
W



k kk
+ X k kc_ dS

dt Z1l S A1

kq k

dk (0) =(h 1, ) (3.31

d dk
dt £(0) = ( k)

Remark 3.24: Remarks (3.16)-(3.17) also apply in this case.

1 l1 1 .sc
Remark 3.25: If h = (h0 ,h1) H0 (20)XH0((2I) but belongs to H0(2)

' some technical

difficulties would be encountered in defining (3.106).

Remark 3.26: The difference between the estimates (3.63) and (3.129) is

due to the fact that the solutions of (3.63)-(3.64) are more regular than

9 the solutions of (3.117)-(3.118). For further inquiry, the interested reader

is referred to [23,30].

An example is now given to illustrate the computational aspects of the

7 approximation of y . This example is also considered in applications in

.' ~., Chapter 5.

Example 3.7: Let f0  1 1, fl = 0, h = 0, g = 0. Then (3.80)-(3.84) become

.1.

"" :

-4' " -

. -. .,. - -
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-Y O K-Yo

2 2 - 1 on (-1,O)X(O,T)
3t 3x

2 2Y v e Y EI

3t2  3 2 = 0 on (O, )X(O,T)

y o(-l,t) y (l,t) = 0

YO (O 't ) = El (O 't) (3.132)

E0 _YEl(

;x (0,t) E (0,t)-x°

y 0 (x,O) = y 1 (x,O) 0

(XY =Yjl(x,O) 0'--2" 5t (x O = t

Recall that
k 2

S0 --((2 k-1)

02

= (k-) 2

11p k V2 sin /Xk,

*. The solutions to (3.130)-(3.131) are readily calculated and are given by:

X-..I
ck (t) 2 (-1) k-I 1  s

(. t) = (1 - ct) (

k, 3/2
1 0=

t'¢ O D

+ 2/T (Cosk V -(-1)
1." 3/2 k 0 3/s

- "(p 0 ) G 0 )

#71

.........................................
. . . . . . .. . . . .
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! 0.
i Therefore, y is written as

0 co2-)k-i
= 2(-i / (1 - cos Vpkt) cos vl1kx (3.133)Sk=l k3/2 0

01 4 - Tsit) 4 (-1)3/2k~~~l~ /i i()3/2
k1l 17FZ10

(3.134)
£2-i

4- ~~~0 Z.+: -12-k. k-l (cos4VT0teVk+ E A/2 k (Cos/;t s cos t)x1 =1 () 3/2 O-X )  1

Remark 3.27: The counterparts of Remarks 3.19-3.20 are also applicable in this

example.

3.5. Concluding Remarks

In this chapter, the convergence of the solution of three classical

boundary value problems (namely elliptic, parabolic and hyperbolic) as c 0

has been analyzed, using the spectral analysis undertaken in Chapter 2. For

elliptic boundary value problems, it is found, that by modifying the weak limits

appropriately, a strong Laurent series expansion of y can be derived. For

parabolic and hyperbolic boundary value problems, zeroth order approximations

in L2 (0,T;L 2)) were easily constructed,using only the weak limits of the

eigenvectors of A E

Several examples were solved to illustrate and clarify the aspects

of the problems at hand. Table 3.1 summarizes the properties of boundary value

problems investigated in this chapter, in their simplest form.

.. o.
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C--)

-,4I
-n -4 C14 -

.14 -1 u-
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- ~~~ 0 0f ~>
- '' 4 j '- - Ci
~ 4.' ~ 40r) C-3J W -

Iw 4. J 0 4-1.
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The approach followed in the present exposition is general enough

to encompass many stiff operators. As an example, many boundary value problems

involving the stiff operators considered in Sections 2.3-2.5 can be approximated

using the same concepts developed herein.

. .. -, .

fl. "m
.J ~

-i~

%° *° %

_%-- - .

. *
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CHAPTER 4

SUBOPTIMAL CONTROL OF STIFF SYSTEMS

4.1. Introduction

.. In Chapter 2 the spectral decomposition of a class of stiff

operators A, including the convergence of their eigenvalue-eigenvector

pairs as s-0, has been analyzed. Using the results of this investigation,

some classical boundary value problems involving the aforementioned

operators were studied in Chapter 3. The convergence of their solutions as

F 0 were analyzed. Then, asymptotic approximations of these solutions were

constructed, using the weak limits of the eigenvectors of A as E - 0.

Asymptotic error estimates were also obtained.

In the present chapter, some control problems with quadratic cost

functionals are considered. The results derived in the previous two

chapters are used to investigate these problems. The objectives of this

chapter are:

1. to obtain information about the behavior of the optimality system as

o ~0,

2. to "approximate" the state and the control of the system for small values

of E.

The control problem of distributed parameter systems is formulated

in many books and manuscripts such as [2,8,23-30], to name a few. In [81,

". a semi-group approach is followed. However, a variational approach is

chosen in [23] and the subsequent references. Recently, several results

about Dirichlet boundary control in parabolic and hyperbolic systems have

appeared in the literature [7,20,21]. However, the assumptions made

.......... . . . . . . . .. . .-. . ., - - . ... . . .. . -.. . .. , . . .
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*. therein, concerning the coefficients of the operator A ,are more restrictive.

Hence, a control problem with Neumann boundary control is considered in the

sequel.

The formulation of [23] seems to be adequate for the presentation

herein. Consequently, the control problems to be considered are adapted from

there. In this chapter, the control of a class of parabolic systems

is investigated. Two types of control are considered. In Section 4.2,

the control is distributed. In Section 4.3, the control is of Neumann

type, exercised through the boundary. In each section, the problem formu-

lation is first presented. Then the convergence of the state and the costate

as e -0 is studied. Their asymptotic approximations are then constructed,

using the approach developed in Section 3.3. In Section 4.4, some concluding• 7 ..

remarks are given.

4.2. A Parabolic Problem with Distributed Control

4.2.1. Problem formulation

Let H= L2), V= H() where QdoUQlU S Cn , with boundary

-F-oU F1 as depicted in Figure 2.1. Let

n n k
a(, = Z f aE (x) a iW -3 dx, k=O,1 (4.1)i=1 j=1 Jk 'x x

kk

where a k(x) satisfy the conditions of Remark 2.9. Consider the following

control problem

%- . ,.

.'.:..,..
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inf J (v) y (T)-zf12 + z Jy 2

v L2 (O,T;H) L (0TH)

+ 2 (Nv,v) 2 (4.2)

L (0,T;H)

subject to

0 (ySP) + a0(y,,) + eal(y.,p) - (f,,p) + (v,,), V EV (4.3)

* y (0) = h, h and zf are given H (4.4)

2
0 f and zd are given in L (0,T;H) (4.5)

2
* yEL (0,T;V) (4.6)

2L2 "

* N is a given operator in £(L2 (0,T;H); L (O,T;H)), which

is hermitian and positive definite. (4.7)

Under these assumptions, the above control problem admits a

2 2
unique optimal solution [23] {ye,u }GL (O,T;V)x L (0,T;H) for fixed c,

characterized by the following optimality system

(y, + a0(Y9,p) + E= (f, P) + (u ,P), YPEV

(4.8)

(-p ,) + a , ) + Eal(P, ) - (y Zd,.V

y (0) h, p (T) yC (T) -zf (4.9)

u-= -N p E (4. 10)

2-,.-.S E p L2(0,T;V). (4.11) .

The optimality system (4.7)-(4.10) can be decoupled through the affine nap

..
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pC P y + r (4.12)

where P , r are defined by

n -P' + P A + A P + P N- = I

(4.13)

P (T) - I

-1 -l'
-r' + A r + P N- r =P f-z

(4.14)

r (T) = -zf

where A is the operator associated with the bilinear form a ( =

a + Ca (p,$). Consequently, the optimal control u given by (4.10)

can be written in the feedback form as

-1
u =-N (Py +r (4.15)

The properties of P and r are summarized in [23], Theorem 4.4,
E E

p. 148, some of which are

P (t)EJ2 (H;H) (4.16)

P*(t) = P (t), (P (t)s,s) > 0, VsEH (4.17)

2r E L (0,T;V). (4.18)

Now let (Yk,x }k be the eigenvalue-eigenvector pairs of the operator A_,-k=1

a0 (x, ) + 1a.l(x.,) = * ,(x ), WeV (4.19)

such that
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(X ,X ) = 6ij (Kronecker delta). (4.20)

For simplicity, assume N= ol, p > 0 and the eigenvalues of A are not

repeated. Then the operator P (t) can be expressed asC

P (t) = E P pX(PX) VOCH (4.21)

where {Pi~j satisfy

d-1 kikj {
+, +y,)P' + - k p p

-dt + C E

p" (T) = (4.22)
,E:

i,j 1,2,....sf

It can easily be verified [8] in this case, that

Sp 0 if i#j (4.23)

.

is a solution of (4.22). Therefore, (4.22) reduces to

dpi
p ,.i ii 1 ii 2

-w.- +2p +-(p )=
. ... ",ii

p (T) 1 (4.24)

',.°- i -
: 1,2,... '

The function r can be expressed as

r s= w (4.25)
- " ,
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where (s } satisfy

ids
E.i I ii i i ii i

'd + (YC +p E ) S = (f,x )p - (zdXE)

i i
s (T) =-(zf.x ) (4.26)

i = 1,2,...

4.2.2. Convergence of the state and the costate as c 0

• -The convergence of y and p5 as :- 0 is summarized in

Theorem 4.1: Let y and p be the solution of the optimality system (4.8)-

(4.11). Then as e 0,

y° Y y weakly in L 2(O,T;H)

2
p p weakly in L (O,T;H)

L 2 (O,T;V)

II PIL 2(O,T;V) C 2

JE (u) J(u)

where y and p satisfy

,-(y',) + a0(Y,) +g (p,)= (f, , V p(EV..:..-
0 NJ

(-p',p) + a (P" ) - (Y'Q) -( z  ) ' V V (4.27)

y(O) - h, p(T) = y(T) -zf.

~? I

.1
%

.4.- , ,- ,,,, , .- ,, , , % . ... . ... .) . - .. - . . ,v.,,. ' .. °. ' . . .. ' . ...-.-. '.'..-. . . .'.'.' .. '
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Proof: Let

0kk k k
y Z ~c' + d

£ k=1 C E k=1

k k k k
p E a + E t

E: k=1 6 C k=1 c

where fkI o fk fdk Io adf k 1o aif
k=l' Ea k=1 {d k1' and kb=1atsf

k

k k k k k

+ Wc+ -b a (fk)-

k

- + x1%' d _Ck = (z k~

k k k k k
c (0) =(h,; a, (T) cd (T)-( zf "P )

kd k k,2,...

The~~~~~~ abv cope eqain hav unqu souin for an vle f A

As aresul of0his th bic(at opdao (T) an hefntinrt)as

* .. .. .. ~~ 1, .. * * . -

The ~ ~ abv cope qain aeuiu oltosfrayvleo .A

E-.........................r............................... . 1,.......................equ tion
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U Theorem 4.2: Let P C(t), r (t) be the solutions of (4.13)-(4.14). Then as

P (t) P(t) in C(H;H) (4.28)
E

2
r (t) r(t) weakly in L (0,T;H) (4.29)

P(t), r(t) can be written as

4 P(t) = (4.30)

r(t) (4.31)
°' - .. ,: ,.',(t

where

P0 (t)X = v (x ), VXEH (4.32)

_ii

Pl(t)X = Pi 1 (X, ) VXGH (4.33)

v. i=-1rl0(t )  SY(.4

r (t) s i  (4.35)

{P},=1' (Sk},i-1 k=0,1 satisfy

ii 'I.i"i
dpo 2 i ii ii 2

dt--+ 2u p + (po)
dt 0 01p

((4.36)
p II i(T) = 1
0

.'.°
°.4
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dp1  iI~ + I (p 1i

dt - p 1  ) (4.37)

p (T) = 1

+ds+ 1 0)s (f -(z

(4.38)

s0(T) = -(zf,:i)

ds'
1 i ii i ii Zi ) "I

SPl s1 (fo')pl 1 V

(4.39)

s (T) = -(zfP i) Yd

i = 1,2,...

Proof: Decompose the eigenvalue-eigenvector pairs of A as in Theorem 2.1

and use the limits therein and (4.21)-(4.26) to get (4.28)-(4.39). 0

Remark 4.1: It is noteworthy to mention that the pair {P(t),r(t)} decouples

the optimality system limit, i.e., (4.27).

4.2.3. Asymptotic approximation of v and P

Using the same approach as in Section 3.3.2, let the zeroth order

2 0 0 0
approximations in L (0,T;H) of y, and p be denoted by y = (y0, l and

0 0 0
p0= (p0Pei and defined by (for 0< r1<< 1)

-o

00 0+ A o -- -f P 0 o n Q 0"
S0 0(4.40)

0
3p0  o o

+ A---O y 0 - ZdO on Q0

%-'-" -'---"'- " "v'- '- " -. *-"- " " -.- ' * : <"- * '. - -.- " ".' % . ' - '.' . . 'v ',, --.- ,..,--...-- v...-....i- ,"- - -
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p=0 onZ
0 0 0

(4.41)

-= 0 on R
A A0 0

y (0) -h, p~ (T) y (T) zf on Q (4.42)

00 1 0 f

+ A yE= f 1 NP1on Q

(4.43)

3P 0~1 0 0

0 0
Yc-1 , pE = 0 on

=y (4.44)

0 0 0i 0  o

y (0) h on Q

* p 1 T) =1 (T~zf 1 (4.45)

0 00

Therem 4.3: Lesyobteslution of (4.43)-(4.45) and defne ap inScio.. be

U,0 0

Thoe .: Lt( 4Ib h ruto f(.)(.0 n y PIb
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iycy-Y 2 1 C 1/2 (4.46)
L (0,T;H) 1

ITp ;) < c 1/2 (4.47)L 2 (0, T;H)

J (u) ) [ < C3(. (4.48)

Proof: The proof of (4.46)-(4.47) is practically identical to that of

Theorem 3.4. Since

0 -1 0
u - -N p (4.49)

using (4.46)-(4.47), one gets

J (u) (u 0 ) + O(E). C) (4.50)

klo
Now let be renormalized. Then the optimality system

'k=l

(4.40)-(4.42) can be decoupled by the map

p0 =P 0 + r (4.51)
0 0 0 0

where P (t) and r (t) are written as (4.32) and (4.34), respectively, wi ..

0 0
'p0 i=1 and {s } i= satisfying (4.36) and (4.38). The optimality system

(4.43)-(4.45) can also be decoupled by the map

Pl = 1 yP 0 +r (4.52) -

where Pi(t) r(t) are written as

, .

Ci=I

- -- - -- , -" "- -- . ..... ......... " " " ""6
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00

r 1 (t) = I s , (4.54)

'22wih ii i }
with {p l i= and {s e satisfying, respectively,cii1c1 i1l

! p
" Eiid1 + 2 X i ii + ii 2
dt + lcp 1 E: I p 1I

(4.55)

pii(T) 1

PdlsX (Xip1)i =(f~)cf

":

E +S(X i+ ii si  0 S)p
-dt 1 pcE:I e YO DA 1  E

-E f p) 3'P dS (4.56)

S 0

s(T) = (z ,9 0.p.

S0 0
The presence of y 0 and p0 in (4.56) implies that the optimality systems

S0 0

given by (4.40)-(4.42) and (4.43)-(4.45) have to be solved sequentially.

• " 0
However, it is clear from the analysis of Section 3.3 that setting y0 and

0 to zero in (4.44) induces errors in y I and p. no more than 00"E).

Consequently, it may be desirable to set them to zero. Another possibility

may be that no control is exercised on 2 In such a case, it may be

advantageous to synthesize a feedback law of the form (4.52),where s1

0-" are computed from (4.56) with p set to zero.

" Example 4.1: (Cf. Example 3.6) In this example, the following control

problem is analyzed:

inii J(v) =1 1  2 (4.57)
2 2lvi 2

vEL 2 (Q) L (Q) L (Q)

7 7
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subject to

2 "

ay 0 a2

on Q
3xt2V 0 0

(4.58)
... 2

. "y DY Y l

t 2 on Q1x -

yo(-l,t) = 0, y (,t) = 0 (4.59)

YO ( O ' t) = Y1l(O't) "

(4.60)
ay

EY o (0, t) = 3YEI (,t)
ax ax

y 0(x,0) = 1, yE1(%,0)= 1. (4.61)

A suboptimal feedback control law as outlined previously would be given by

0 1 0Uo=- -- PYo'

• Py1  (4.62)
ol 0 EA E""

Recall that

k = 2 kp ((2k-1)) cos(2k-1) x

k 2 k
(I=  = sin kTx.

Hence, (4.62) can be rewritten as

• . , -- , ," . " -.. -, -. - ,. . . . '- " " . . " -' " . ." . -' . -- " . -' . -j . -" . . -' . -' -" . ' -
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* 0 i~ 0i
u = -- ~p (y!0 i 0i 0oo~

(4 63)
0 1j 00ii

where{ i, 1 and (p} satisfy

0 i- 1  C1

%* .'..(4.64)

El-+ 2X ip + -(p )
dt Esi Ip E1}

(4.65)
.5p (T)=0.

El

In this case, (p'} and {pl )} canbecmu din lo dfrma0 i=1 El i=1 becmueincodfrma

-D (t-T)

PO UU (4.66)

S -D t t) )
B A -B

o (467
E: ~ -D (t-T): I E

A e -B

* -~ -where
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i i i 2 1

B~5  - + /i) 2 + (4.68)

i 2 +-
0 0 p

i i 2 1

Bl 1x 1 + 0 + (4.69)

The numerical results are discussed in Chapter 5 for various values of c

and T.

4.3. A Parabolic Problem with Neumann Boundary Control and Boundary

Observation

4.3.1. Problem formulation

2 1 n
Let H=L (sV-H (P) where Q= 2 U 2 U SCR with smooth boundary

0 ~1

r and interface S as indicated in Figure 2.1b. Let
0

where

i.=. jj lx 1
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k-  aij satisfy the conditions of Remark 2.9. Let

= x(O,T), i=0,1

E -x(O,T)

R = Sx(O,T).

Now consider the following control problem

inf J (v) = f (y-zd) 2dE + (Nvv) (4.70)
2L

subject to

0 (y',) + a0 (Y. 9P) + eal(y P) (f,9P) + (v'4P)L2 (EV (4.71)

- 0 y (0) h, h given in L2(IQ) (4.72)

2
0.f (f0'fl) ' given in L (0,T;H) such that

2(fi)i) 0 i=0,1 (4.73)
L 62.

2" Zd given in L (Z) (4.74)

* N is a given operator in J (E); L2 M),

which is hermitian and positive definite. (4.75)
-A

Under these assumptions, the above control problem admits a unique optimal

2 2
solution (y ,u }EL (0,T;H)x L (7) for fixed c [23], characterized by the

J, following optimality system

4.. ,
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(y',¢) + a (y ,9,) + ca(y Ic) = (f,p)+(u ,)L V2V !

50 1 L 2(r')

(4.76)

+ aO(P.) + eal(Pe') = (Y-z )L2 V V
0(p'1 E + L (F)

y (0) h,=h pE(T) 0 (4.77)

yep CG L2 (0,T;V) (4.78)

where

u E -N-pC (4.79)

This optimality system can be decoupled as in Section 4.2 by the affine map

p P y + r, p* P (4.80)

where P and r satisfy, respectively,

(-P' , + a0 ( ,P ) +ea 1 ('P,P )+a 0 (P ,p + a I ( P  . ¢

+ C(N-p ,P :)L2( = - 2() W, V (4.81)

£ L (r) L (M

P (T) =0

(-r' ,) +ao(r ,P)+ a(r ,) = ( )2 VpV

L M (4.82)

r (T) =0.

k k pa

Now let ' ,k be the eigenvalue-eigenvector pairs of A , i.e.,
S.>k=

k k kk, k ) "'caa0 l(,) +al(X ,) C (x E) (xk ) = VE V. (4.83)

".. ,( g<

•- °o

,'I-. -
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For simplicity, let N=pI, p 0, then P and r can be written as
E E

3. i
r Zs X (4.85)

ij00*where {p} and {s } satisfy
:iij11.

dp E i J +~) 1 kZ, '1fXX'r= X

dt Ei  P k= z= E Cix(, r Ey E(4.84E
• .. j iZj ~F~ xd

dt ? s 0 k=1× 1~(4.86)

iil

piJ(T) =0, i'j1Is2,..

where

P pji Vij

..- i

E":

dt+ s ~ 5  fd ()(4.87) .

s; [ c(T) = 0 i1 ,,-

Remark 4.2:. Since V=H (Sl), the operator A has an eigenvalue which is

*zero -ind its corresponding eigenvector is a constant on Q. By assumption

(cf., (4.73)), they are excluded from (4.83).

Remark 4.3: Observe that (4.86) is not decoupled as in Section 4.2. I

°29

* = P 
.9

• ° . c-;A~ 7 -. * . >~. .~--.- ** * K -
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4.3.2. Convergence of y_ and p as -0

It is straightforward to prove, as in Section 4.2, the following

theorem.

Theorem 4.4: Let y and p be the solution of the optimality system

(4.76)-(4.79). Then as E 0

y ekl nL2.0TH

2
y E~ y weakly in L (O,T;H)

J (u)- J(u)

where y,p satisfy

(y',,P) + a 0 (y,;) + p 2 (r (f P), V oE V

L M(L)

=(O h, p(T) =0.) -

Proof: See proof of Theorem 4.1.

Remark 4.4: As in Section 4.2,

P Wt P t) in £(H;H)
E

r (t) r(t) weakly in L 2(0,T;H)

where the pair "'~l satisfy (4.8l)-(4.82), respectively, after letting

--0. Note that 'P,r decouples the optimality system limit, i.e., (3.88).

* Furthermore, P(t) and r(t) may split, as in Se~ction 4.2, in some instances

(depending on the forcing term f), because the influence of the null eigen-

value of A is excluded by assumption (..Rema~rk 4.2) .
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4.3.3. Asymptotic approximation of y and p
0 0 0 0 0 0Let yO= Yy y) and p,= (p0 ,Po ) denote the zeroth approxima-

2
tions in L (0,T;H) of y and p , respectively. For O<E<< 1, they are

defined by

y 0  0
- +AY = f on Qat oyo 0o

(4.89)

-t- + A0PO 0 on Qo
aY 0 aP

"' 0

wy 0  0 00
7- u09 = YO-Zd on E

0A 0 (4.90)

0 0

ay0  Dp0- 0, -A 0 onR

0 A

y 0 ) =hop p 0 () 0 on (4.91)

- (4.92)

0 N 01

-aYo =~ f =.n

a 0(

r~'."

0
+=A 0 on Q1

0 0 0 0
y 1 y, p 1 p on R (4.94)

0 0'.'.4 y1 (0) = h0, Pi(T) = 0 on f' (4.95)

Swhere the solution of (4.93)-(4.95) is defined using transposition.

S. 
......0

.
°..4
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0 0

Theorem 4.5: Let {y,,p} be the solution of (4.76)-(4.79) and {y ,p }

be the solution of (4.89)-(4.95). Then the following estimates hold for

0 < E <<

0 1/2
IY-y 2 < C1 I /  (4.96)

L (O,T;H)

Pip -P0 I < C2 1/2 (4.97)

IJ (u)-J (u0 _ C3 (4.98) 2

CIC2,C3 are some constants independent of E.

Proof: See proof of Theorem 4.3.

As before, (4.89)-(4.95) can be solved, using the weak limits of

the eigenvectors of the operator A . It can be easily shown as in Section

aweak limits of k ,n be decomposed into

k k k kw
S k ku' ,k=l whose weak limits satisfy

k - constant on Q0
00

k k k }

A = X on
1 1 1

(4.99)

ak
=0

dA

k = 0,1,2,...

4-
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k kk on ~2
S. . 0 0 0 0 0

k 0 o

kk (4. 100)

=0, 0 =0

0 r Os

k = 1,2,...

." where the null eigenvalue and its corresponding eigenvector are included

in (4.99). The constant in (4.99) is chosen such that p kEH 1 (2), k=0,1,2 ....

However, because of (4.73), = 0 and, therefore, (4.99) has to be90

modified into

.* " *--k

kviP = 0 on a 0

0 00

A~ =P x on k
A1 11 on P(4.101)

.'. k i 0
I_ L. 91 S 0

a S

k = 1,2,...

Now (4.89)-(4.91) can be decoupled by the following map

.. .0 0
PO POO + r0 (4.102)

with P and r0 written as
0 0

- X  E E p (×  (4.103)0 i=1 j.1 0

r = (4. 104)
0

NO

I .. . * " ' " . _ " ' _ . - • . . -' " "- ' 5 ,' ." ' " . .' --. . .- "
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jjx j~
where "Po i and is o satisfy

q k=1z~iO F } (4.105)
ij ii ii

PO (T) )0, PO  dFp J ,2,

ds 00 +-

(4.106)

s (T) = 0

i 1,2,... i

Remark 4.5: Note that (4.93)-(4.95) are decoupled. Hence there is no

0
need to compute p0 for control purposes. As before, (4.89)-(4.92) and

S(4.93)-(4.95) have to be calculated sequentially in time because of (4.94).

0
However, by setting y 1 =0 on R, a cost no larger than 0(v7 ) is incurred

*since the solution of (4.93)-(4.95) does not influence (4.92). Therefore,

it is rational to do exactly that to avoid the sequential computation.

Remark 4.6: If the condition (4.73) were read (f,l) 2 0, then, by

L (r)

lett" (4.n 1-m - 1 in(4.71, L
=,f meas. 2 meas. .21

difficulty would be encountered.

Example 4.2: (Cf., Example 3.6) Let

sin 27x for x E:(-1,0)

Z =0, f h

10 for XE:(0,I).

Then the control problem (4.70)-(4.77) becomes

-. .-

(49)(.5 aet ecacltdsqetal n iebcueo 49)

-. . .. - * *~
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inf J (v) = f (y (-1,t)) 2dt + p f (v(t)) 2dt (4.107)
2(OT 0 0

vE L (0,T)

subject to

3y a 2
E. -yo 0 = f on (-l,0)x(0,T)

at x2 0

(4.108)
- _ . a a2

E- = 0 on (0, 1)x(0,T)
atx

yo(0,t) y (0,t)

£0 (4.109)

• Y o (O,t) E - (O ,t)
':- x ax

(-1,t) =V (4.110)ax

y (x,O) 0. (4.111)

A suboptimal feedback control law can be synthesized as

0 1 0
' u 0 =- (Po0 +0 ) (4.112)

where P0 and r0 are given by (4.103)-(4.104) where { " --1-are0 =

"{v cos i-x I and ip j I , 1
0 (S I satisfy

;. j=1 0 i=

.' '.' dP0
((i 2 2 ij 2 0 o k+; ki j ( j): " - Td-- +  ( ( i - ) ) P o + -- - 2 ( I (- I) .'

0 "k=1=i 0 0 }.(4.113)
-.. P o (T ) = o

*.-0
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dso 2 . iZ 2(1-(-I)Z)
dt SO 0 7(P204

S24) (4.114)

s (T) = 0.
0

Remark 4.7: The present methodology for approximating control problems

cannot be applied blindly because it may yield erroneous results. Many

factors can limit its applicability, depending on the control problem at

hand. Two prominent factors, which are central in any control problem, are

the type of control and the type of observation. One problem where this

methodology fails is the elliptic stiff control problem with Neumann

boundary control and Dirichlet boundary observation considered in [29],

page 323.

4.4. Conclusion

In this chapter, the control of two stiff systems was considered.

Using the concepts developed in the previous chapter, suboptimal feedback

control laws were derived for these problems for small values of the para-

meter c.

It was shown, that the approximations of the state and the costate

are easy to obtain, provided some care is taken, depending upon the specific

problem at hand. It is safe to claim, based on the present results, that

these approximations alleviate stiffness for most problems with meaningful

disturbances. Control problems with Dirichlet boundary control are more

complex. For practical classes of ccntrol inputs, the state is not
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5 i "sufficiently" regular [22,23]. Therefore, the control space has to be

restricted to obtain meaningful results. As a consequence, the feedback

* . synthesis of the control is involved. One remedy for this dilemma is to

* assume that the coefficients of the operator A., as well as the boundary

where the control is exercised, are more regular. In turn, this assumption

"- restricts the number of problems that can be considered. For example, a

possible class of stiff control problems, with Dirichlet boundary control 1

" - that may be investigated, is the class of problems when the operator A is
E:

* as given in Section 3.5.3.

i

|S

U _

b- ."

".S

% °"S

, .

i i .. S

.%'.*- ~ -. . *
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CHAPTER 5

APPLICATIONS TO HEAT TRANSFER AND ELECTROMAGNETICS

5.1. Introduction

There are numerous dynamical systems whose evolution can be

modeled better by partial differential operators such as heat transfer,

electromagnetic wave propagation, chemical processes, elasticity, just to

name a few.

The introduction of a (or several) small parameter c may have a

physical meaning of a small conduction (or convection) coefficient in heat

transfer or a small permittivity in electromagnetics. It may also be

completely artificial, such as in penalized and regularized problems.

*-' In the previous chapters, the theoretical implications of letting

.- 0 in some of these models have been studied. In the present chapter, two

specific examples of such models are considered. The first example describes

the heat conduction in a one-dimensional rod, made of two interfaced media,

having heat conduction coefficients of O(1) and O(c), respectively. The

second example considers the propagation of an electric field in a one-

dimensional waveguide, consisting of two interfaced media, having permit-

tivities of O(1) and 0(E), respectively. Most of the interpretations given

in the sequel are of general nature and hence applicable in many other

related problems.

This chapter is organized as follows. In Section 5.2, physical inter-

pretations of the results obtained in Sections 2.2 and 2.5 concerning the

O* convergence of the eigenvalue-eigenvector pairs of stiff operators are given.

". •. .

~~~~~~~~~~~~~~~~~~~~~~~~. . ..... . .. ; ) : . . . . . . .. .. . . "- - ,-- . - - .- -, .- ° - - , -. .---.. - ...'". . . . . . . . ., , , . .. .. .I
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In Section 5.3, the asymptotic approximations of the solution of the boundary

value problems of Examples 3.6-3.7 are compared with finite-dimensional

approximations of these problems for different values of s. In Section 5.4,

the control problem of Example 4.1 is solved numerically. The last section

contains some concluding remarks.

5.2. Physical Interpretation of the Limits of the Eigenvectors of

Stiff Operators

Physical interpretations of the convergence of the eigenvectors

of stiff operators as s- -0 are given within the framework of the examples

discussed in Chapter 2.

The operator A in Example 2.1 may represent the heat diffusion

nin a slab occupying the space 2ER (n.! 3), composed of two interfaced media

having diffusivities 0(0) and 0(c), respectively. The complement of the set

n.- in R represents the surrounding. There are many possible boundary

conditions on the interface between the slab and its surroundings.

1. One possibility is to assume that the slab is insulated from its

surroundings. This condition would be fulfilled if the normal derivative

of the temperature (outward relative to the set ) is set to zero on

the boundary r of Q.

2. Another possibility is to suppose that the surrounding is an infinite

sink, i.e., its temperature is not affected by the heat diffusion in

the slab. This state would be indicated by setting the temperature of

the slab on the boundary 7 to a constant, which may be assumed to be

zero by translating it.

* V
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Many other possibilities may occur such as a combination of I and

2. In the sequel, condition 2 is assumed to fix the ideas.

The smallness of e means physically that the relative diffusivity

of medium 1 is small with respect to the diffusivity of medium 0. Letting

E:-€0, e.g., in Example 2.1, signifies that medium 1 is less and less

conductive. In the limit, it becomes an insulator. This situation is

symbolized mathematically by the normal derivative (outward relative to 7o)
0

of the temperature of medium 0 going to zero on the interface S of the two

media. Consequently, some of the eigenvectors of A., i.e., { k )
s k=1

do reflect this behavior as indicated by their weak limits (in L ()) given

by (2.32).

From the viewpoint of medium 1, medium 0 is so conductive that it

may be considered an extension of the surrounding for small values of E. If

medium 0 is insulated from (respectively connected to) the surrounding, it

becomes an insulator (respectively a sink) in the limit. These situations

'k
are clearly depicted by the limits of some of the eigenvectors, i.e., {k }

ck=1

in Example 2.3 (respectively Example 2.1).

Now consider the eigenvalue problem Example 2.6. In this case, the

conductivities of both media are of the same order of magnitude. However,

the convection coefficients are of 0(1) (respectively 0(c)) in medium 0

(respectively medium 1), i.e., although the heat diffuses in the slab with

comparable rates, the internal heat exchange with the surrounding in medium 0

is much greater than in medium 1 and this causes stiffness. Consequently,

medium 0 is a better heat dissipator than medium 1.

From this discussion, it seems logical to expect that the

eigenvalue-eigenvector pairs of A would reflect this behavior as C-0.
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It was shown that the eigenvalues of A can be decomposed into two

groups { k-i =i I depending on how they converge as F-0.

- ~..- Exactly as previously indicated, medium 0 becomes an extension of the

surrounding as : -0 and eventually a sink in the limit. By contrast,

medium 1 loses more and more of its ability to dissipate energy as E+0,

which becomes negligible for small values of e. This is clearly demon-

strated by the limits of the eigenvectors given by (2.65a-b), which are

- -completely decoupled.

Identical interpretations can be advanced in the field of

electromagnetics, provided diffusivity, sink, insulator, etc., are replaced

S . by appropriate terminology.

5.3. Numerical Analysis of Parabolic and Hyperbolic Boundary Value Problems

In this section, the boundary value problems of Examples 3.6-3.7 are

are revisited. The exact solution of each problem is not available for the

reasons previously discussed. In the sequel, the zeroth order approximations

obtained in the aforementioned examples are compared with the finite-

dimensional approximations of these boundary value problems.

The set Q= (-1,1) is divided into N equal intervals of length

h- The roof functions are selected as a basis for the finite-

dimensional approximation of H 0 (Q) [2,20,391.

5.3.1. Parabolic problem

It is straightforward to show that the solution of the boundary

value problem (3.73) can be approximated by
.5

4 -
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h N-l1 i
h= Eci(t)wh (5.1)

where c = [c c ... c (t = transpose) satisfies

Mh h h (5.2)
E E: E

h

"i:c (01) - a (5.3)

Mh is given by (2.89)S

h
K is given by (2.90)

f = (f i= 1,2,...,N-1 (5.4)
1 2.

h ha. = (a,.p.) i=1,2,...,N-1. (5.5)

Remark 5.1: Note the notation change from Chapter 3, i.e., y (0) g on 4

instead of y (0)= h on Q because h designates the mesh size. 0

Remark 5.2: The solution of (5.2)-(5.3) for tE (0,10) is obtained by

using the integration routine DGEAR from the IMSL library.

Remark 5.3: In the forthcoming plots, the broken lines represent yO(x,t)

h
as computed in Example 3.6 and the solid lines depict y (x,t). 0

For all computer runs, N was chosen to be 60. Table 5.1

summarizes the computer runs. It is noteworthy to mention that these plots

are both finite-dimensional approximations of y because v (x,t) is also

approximated by a finite summation (large enough to obtain a smooth plot!).

It is evident that these approximations are close. For small E,

0 h
they almost coincide with each other. Note y (x,t) and y (x,t) for t =4,

e- 0 . 1 in Figure 5.2a are at steady state. The temperature distribution on

A - I
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I TABLE 5.1. PARABOLIC PROBLEM

0• -h
Figure Plots of y (x,t) and y (x,t) for

5.1a t=2, xE(-1,1), s=O.1

5.1b t=2, xE(-1,1), c=0.001

": .5.2a t=4, xE (-i,I) , e=0.i1

5.2b t =4, xE(-1,1), E=0.001

5.3a tE (0,10), x=-0.5, C=0.1

5.3b tE (0,10), x=-0.5, E=0.001

5.4a tE (0,10), x -0.5, E=0.I

54b t e (0, 10) , x 0. 1, E--0.001

" is a straight line, i.e., because it is due to a point source on the

interface x-0.

The temperature at x=0.5 as a function of time for =;0.001 is

very small. Hence, the temperature at x=0.1 is plotted in Figure 5.4b.

Remark 5.4: As a general rule, y0 approximates y pointwise much better in

the interior of Q, away from the interface. To substantiate this claim,

plots 5.3a-5.4b are provided. In plots 5.4b, even though E decreased by a
S0 h

factor of 100, the error between y and yh at x=0.1 is comparable to the

error at x=0.5 for =0.1.

* 4 5.3.2. Hyperbolic problem

As with the parabolic problem, the solution of the hyperbolic

boundary value problem (3.132) can be approximated by

7,
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h N-I i

h (t), (5.6)

where c = [cI 2 N-i satisfies

h.. h hM c + Kc = f (5.7)

c (0) = a (5.8)

a (0) = bh (5.9)

his given by (2.89)

Kh is given by (2.90)C

fh

fh is given by (5.4)

h
a is given by (5.5)

h h
b (h ), i= 1,2,...,N-1. (5.10)

Remark 5.5: Cf., Remarks 5.1-5.3. a'

For all computer runs, N was selected to be 60. Table 5.2 sum-

marizes the computer runs. Due to the asymptotic error estimate (3.114), one

0 hwould expect that y, and y. would not be as "close" as in parabolic systems.

Nevertheless, the two approximations "approach" each other as E-0. These

facts are clearly illustrated by the plots in Figures 5.5a-5.10b.

0.Remark 5.6: At t- I , Y 0 is growing up until it reaches its maximum at t =2

At t 4, it attains the minimum and this process is repeated periodically

0every four units of time. However, y behaves differently because it is

i -"
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TABLE 5.2. HYPERBOLIC PROBLEM

0 h
Figure Plots of y (x,t) and y (x,t) for

5.5a t=-1, xE (-1,1), =0.1

" 5.5b t- =, xC (-1,1), £=0.001

5.6a t-2, xE (-1,1), £=0. 1

5.6b t = 2, xE (-1, 1), =O0.001

5.7a t=4, xe (-1,1), =0.1
, 5.7b t =4, xE:(-1,1) , E:=0.001"

LN 5.8a t =8, x G (-1,i1) , E:= 0. 1;

5.8b t-- 8, x G (-i, 1) , F = 0.001

5.9a tE (0,10), x=-0.5, C=0. 1

5.9b t C(0,10), x-0.5, C=.00o1

5.10a tE (0,10), x-0.5, C=0. 1

2..5.10b t G (0, 10), x--0. 1 6 0.001

the "transmitted wave" from region 0 to region 1. Since the "velocity of

0
propagation" in medium 1 is 0(yvT), it takes longer for y 1 to reach its

maximum.

Remark 5.7: Note that the system given by (5.7)-(5.9) is of

-*order 2N. For N=60, it took approximately four hours of CPU time on the

h
VAX computer system to solve for y_. Consequently, this is not an

economical approach. See Section 5.5 for a better procedure.

S .. . .. -.
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5.4. A Parabolic Control Problem

In this section, the control problem of Example 4.1 is solved
0

numerically. Basically, the zeroth order approximation y of the solution

of (4.58)-(4.61) for v=0 is compared with the controller zeroth order
c
0approximation y of (4.58)-(4.61) for v given (4.62)., The various results

are summarized in Table 5.3.

TABLE 5.3. PARABOLIC CONTROL PROBLEM

0 0 c

Plot Plot of y E(xt) and yE (x,t) for

5.11a t=0.1, xE (-1,1), c=O.1, p=0.1

5.11b t =0.1, xE (-1,1) , E: = 0. 001 , p =0.i1.

5.12a t=0.5, xE (-1,1), E=0.1, o =0.1

5.12b t--0.5, x E (-1,1) , E = 0.001, P=0.-1

5.13a tE (0, 1), x =-0.5, p=0.1

5.13b tc (0,1), x -0.5, o 0.01

5.14a tE (0,4), x=0.5, c =0.I1, P=0. 1

5.14b tE (0,4), x=0.5, =0.001, 0 =0.i

Now some general observations are in order. First, if no control

is applied, the time constants associated with region 1 become larger and

larger as c decreases. Hence it takes longer and longer for the state to

decay to zero. This fact is clearly demonstrated by Figures 5.11b-5.13b.
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Second, no matter how small c is, the effectiveness of control is

not appreciably diminished. This is readily visible in Figures 5.12b,

5.14b and may be substantiated by inspecting the Riccati gains given by

L (4.67),(4.69).

Third, the control is regular in the interior of Q, away from

the interface as shown in Figures 5.13a-5.14b.

Finally, the effectiveness of the control is enhanced as p

• . decreases, i.e., if the control becomes "cheaper," its action is more

S -. effective as seen in Figures 5.13a-b. This is not a pecularity of this

example, but a general principle of control theory.

-. 0
-. ... Remark 5.8: The effect of setting y 1 to zero on R produces the dip in

Figures 5.11a, 5.12a. As previously indicated, such action simplifies the

feedback control synthesis and induces an error no larger than O(/).

5.5. Concluding Remarks

In this chapter, the numerical analysis of Examples (3.6)-(3.7),

(4.1) is undertaken. The conclusion is that the numerical results agree

quite well with the theoretical ones obtained in Chapters 3 and 4.

The simplicity of the examples investigated ,,n,','iis mnin" ,ptt.

For example, if the geometry of -. is more complicated, e.g., n-dimensional

(n> 1) and polygonal, the direct computation of even the limit- of the cizen-

vectors is very elaborate. Hence, how can the appr,,ah ', b

-" -"* extcnded? It was indicated in Remark 5.7 that a direct tppr-i, h Is;'*

finite element method is hopeless. Moreover, very compltx::te ritin

*4 ;$
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routines have to be used because of the inherent stiffness of the problem

at hand.

The following approach seems to be the logical alternative, which

consists of the combination of the direct approach and the approach pursued

in this thesis, i.e.,

F-ep 1: Use a finite element method to find the limits of the eigenvectors

of A as c-*0. In so doing, the limits of i }k, l and the rate of conver-
: e { kk=I%

k co
gence of V are obtained as a by-product of this computation.

£k=1I

Step 2: Use the zeroth order approximations derived in Chapter 3, where

_ -' k kloo k k cN .k1, 'k=l and (u 0 k=l are replaced by those computed in Step 1.

In the first step, the stiffness of the problem is alleviated.

In the second step, the use of expensive integration routines is eliminated.

However, some integration is still required to get the desired approximation.

7

4

i .

,#" , .
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.1 CHAPTER 6

CONCLUSION

6.1. Concluding Remarks
I

In this report, the spectral decomposition of some stiff partial

differential operators is undertaken. One class of such operators has

coefficients that are 0(),0(),..,0(p) in Q0 ,...,2p (1', = if i~j),
n

whose union constitutes the open connected set 2CR n. It is found that the

eigenvalues of these operators can be separated into p+l groups, depending

on how they converge as E- O. Each group is associated with a region

., i=0,1,...,p. The eigenvectors can also be classified accordingly.• 1

Their convergence as E- 0 is intimately related to the order of the

operators and the location of the coefficients in question. A general

rule has emerged out of the present investigation. Suppose,without loss of

generality, that the coefficients in question occur in the kth derivatives

S(kj< operator order). Then the higher the Jkl, the weaker is the convergence
U

of these eigenvectors as c - 0. This conclusion is not surprising because

in this case the eigenvectors are more regular, in general [30]. The details

for some typical cases are summarized in Table 2.1.

In this thesis, the value of the parameter E is assumed to be

small. Consequently, the behavior of the spectrum of stiff operators is

analyzed as c - 0. However, similar results can be stated as c - + ', as

evidenced by Corollary 2.1.

*1

-A4

.2 Z ..Z
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In this thesis, it is also shown that approximations of solutions

of stiff boundary value problems (including some control problems) can be

derived using the weak limits of the eigenvectors of stiff operators as

E - 0. These approximations are "readily" computable. However, in general,

they are not as regular as the exact solutions, which may not be accessible

at all.

6.2. Topics for Future Research

Many unsettled issues directly related to this thesis merit farther

research, some of which are:

1. The analyticity of (P}k= (Cf. Remark 2.26).
£k=1

2. When 0 is not connected, e.g., Q. = 0 U 0 (Cf. Remark 2.10),

th iiso k kp ~ e, k k =
k sk=l k i-e k can be decomposed further into

the limi ts of { p EE' k~ i'e . { P , k= 1

k k 00 k k

0T0,,hO0O}k=l and { 1, 0l k=l , each pair associated with a subset of 0 ,as

indicated by the subscripts. It is not clear if there exists one or two

eigenvalue-eigenvector pairs for c > 0, which correspond to each of the

above pairs.

Finally, it would be worthwhile t6 examine if the present

methodology can be used to approximate the solutions of the following

problems:

3. Semilinear boundary value problems [4],

4. Unilateral problems [4,23],

5. Inverse problems (6],

6. Games [3,35],

V when they involve stiff operators.



-" - . . .

169

APPENDIX

In this appendix, some of the mathematical tools needed in this

thesis are discussed and the inquiring reader is referred to the appro-

- priate references.

The following subjects are very briefly reviewed.

1. Definition of 0(.) and o(.)

2. Weak convergence

t4 3. Distributional derivatives and functional spaces

4. Definition of the space £(X;Y)

1. Def 4nition of 0(.) and o(.)

Let f0 (c) and f1 (c) be real, positive, continuous functions of C

in 0 < < c such that lim f.(), i=0,1 exist.• ,-0 C-0 i

S1.I. Definition of 0(.)

f = 0(fl()) if there exists a constant C such that

f < Cf (E) for 0 < E< .

-. 1.2. Definition of o(')

f 0(C)
= o(f(c)) if lim 0, C--0 fl ( -

- For more details, consult [11].

* "2. Weak Convergence

Let H be a real Hilbert space with scalar product (x,y)H. A

sequence "x converges weakly to an element xEH if
n
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(xnY)H (x,Y) VyEJH.

For further inquiry, consult [421.

3. Distributional Derivatives and Function Spaces

Let x={x1 ,x2 , ... x} denote the space variable; x ranges over

nan open set QCR , with boundary F; t denotes time, tE (O,T), T<x. Let

k
C (2) = space of k-times continuously differentiable functions on 2, kCN

°k
C Q) - space of k-times differentiable functions in 2, with compact support

;- - ) : o .
V(2) =0.

*()= dual space of V(2), i.e., the space of distributions on 2.

2
L() = space of functions, which are square integrable on 2, which is a

2
Hilbert space (L (2) is identified with its dual).

3.1. Distributional derivatives

Let

P= l P = P 1 +p 2 +" +Pn

p p p2  p
.D =D P D2 Dn D,?.

*P 1 2 n i -x

1 -

D D-. n Di 'x
2)

D. is said to be the qth-distributional derivative of f if

(Dqf,;) - (-i) 1 q (f,Dq, , :VC D(-)

*. where (. , .> designates duality between DC:) and ()

S°j
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3.2. Sobolev spaces

One may define the Sobolev space of order m as

H m(Q) = { L : L 2(D), D;%EL 2 (P), Vq, jqj:_m}

which is a Hilbert space if endowed with the scalar product

Hm(2) [qj <m L (P)

m
For any PEH (2), one can define uniquely its traces on the boundary, i.e.,

M-i

M-1-

k
where P - , 0 k _ m-1} is a continuous linear surjective map

of ) onto Hmkl/2() Using the trace mapbone can define several
k=O
m

subspaces of H (2-) such as

m m k
m(2 ;r0) [0 . tHm( (2) k 0, 7, 0 ! k < m-i)

0 03v 70

H0(2) = Hm(;r) .
0

% .If time is involved, many Hilbert spaces can be defined in a similar way,

2
e.g., L (O,T;V) = space of functions defined on (O,T) with values in a

space V such that

T 2
f k' 11 dt <

0 V0

where V may be any of the above Sobolev spaces or their duals.

- . . . .-
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If V=L 2) then

2 2 2
L(OU,T.;V) =L (O,T;L (2)=L (2 (0, T))

A systematic study of these spaces,as well as many of their subspaces, is

found in [2,30].

4. Definition of £(X;Y)

£(X;Y) is the vector space of continuous linear operators from X

to Y. The normi of an operator AE C(X;Y) is defined by

JlAx If.1
xEX X
x#0

If Y is a Hilbert space and X is a pre-Hilbert space, the space £ (X;Y)

is a Banach space. See [2,15,421 for more details.
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